Ministry of Education and Science of Ukraine National Aerospace University "Kharkiv Aviation Institute"

Department of Mechatronics and Electrotechnics (305)

APPROVED BY

Project team leader

«31» __ 08_ 2021

COMPULSORY CURRICULUM WORK PROGRAM ELECTRICAL ENGINEERING

Field of knowledge: 13 "Mechanical Engineering"

Training direction: 134 "Aviation and Space Technology"

Educational program: "Satellites, Engines and Energy Installations"

Full-time Training

Education - Qualification Level: First (Bachelor)

Cource Convenor: Postnikov V. N., Associate Professor
Kosychenko O.N. Senior Teacher
Curriculum was examined on meeting of Mechatronics and Electrotechnics
Department
Protocol # 1 of « _30» _08 2021 p. Chair of Department :
Associate Professor Fomichov K. F

1. Course Description

Indicators	Fields of knowledge Training direction Education – qualification level	Characteristics of the discipline Full-time study
Credits points - 3 Modules - 2	Field of knowledge 13 Mechanical Engineering	General training cycle
Content modules - 2	Training direction	Year of Training 2021/2022
Individual tasks	134 Aviation and Space Technology	Semester 3
Full-time study- 90 Classes work /total hours - 40/90	Specialization Satellites, Engines and Energy Installations Education qualification:	Lectures - 16
Hours per week – For full-time study classes-2/3 independent work-3	first (bachelour)	Practical classes - 8 Laboratory classes - 16 Independent work -50
		Test
		Modular control Pass

NOTE

Ratio number of classes to independent work hours are:

for full-time -40/50.

The purpose and tasks of discipline

Learning Aims are

- to teach students the fundamentals of direct and alternating current electrical engineering and to equip them will the electrical skills and knowledge necessary for successful completion of the Aircraft Engineering course;
- to equip students with the knowledge and skills necessary to solve basic electrical problem likely to be encountered as an engineer in the aviation industry;
- to introduce the characteristics and applications of electrical components and devices used in DC and AC electrical engineering.

The Object of studied is electrical and magnetic circuits, electromechanics and electronic devices.

Subject of Studies. The subject of studies is fundamental laws and principles of electrical and magnetic circuits.

According to the requirements of the educational-professional program, students must achieve the following

general competencies:

- be able to:
- communicate in a foreign language;
- make informed decisions;
- learn and master modern knowledge.

Program learning outcomes:

- fluent in oral and written foreign language on professional issues;
- have the skills of self-study and autonomous work to improve professional skills and solve problems in a new or unfamiliar environment;
- describe experimental methods of studying structural, physical, mechanical and technological properties of materials and structures;
- understand the features of workflows in hydraulic, pneumatic, electrical and electronic systems that are used in aviation and rocket and space technology.

2. Content the course

Content module 1

Analyses of Electrical and Magnetic Circuits

Theme 1. Fundamentals of Electrical Circuits.

Brief history of electrical engineering development. Subject of study and task of the discipline. Valuable advantages of electrical energy.

Elements of electric circuits. Analysis of direct current (DC) circuits. Electric circuit and its elements. Ohm's and Kirchhoff's laws. Work and power of electric current. Analysis of simple electric circuits.

- **Theme 2. Complex circuit calculation.** Usage of Kirchhoff's laws in complex circuits calculation. Node-voltage method. Loop-current method. The conversion of delta-connected resistances into an equivalent wye connection and vice versa. Superposition method. The nonlinear DC circuits and their analysis.
- Theme 3. Alternating Current Circuits. The ordinary alternating current (AC) circuits. Generation of sinusoidal EMFs. Alternating current and its parameters. Vector diagrams. Complex representation of sinusoidal values of current, voltage, EMF. Circuit elements connected in series. Voltage resonance. Current resonance. Half power frequency, Bandwidth, Quality factor, Power factor. AC steady-state power. Three-phase electrical circuits.
- Theme 4. Magnetic circuits and their analysis. Magnetic field and its displays. Magnetic flux density, magnetic flux, magnetic field intensity, magnetomotive force. The law of the total current. Magnetic properties of ferromagnetic materials. Permeability, hysteresis loop, residual induction, coercive force, reluctance, saturation point, eddy currents. Ohm's law for magnetic circuits. Electromechanical and inductive displays of magnetic field. Direct and reverse problems.

Coupled circuits. Self and mutual induction, emf, inductions. Solution of coupled circuits. Series and parallel connections of two coupled coils. Air transformers.

Transformer structure and principle of operation. General parameters and characteristics. Tests on transformers. Open-circuit and short-circuit tests.

Content module 2

AC and DC Electric Machines

- **Theme 1. Asynchronous (induction) Machines.** Construction. The rotation field. EMFs of stator and rotor. The speed-torque characteristic of an induction motor. A slip-ring motor. Starting and speed control of induction motors. Losses and efficiency.
- **Theme 2. Synchronous machines.** Construction. Synchronous generator. Armature reaction. Losses and efficiency of a generator. Parallel operation of generators. Synchronous motors and it's characteristics.
- **Theme 3. DC electric machines.** Function design of DC machines. Operation principle of DC machines. DC generator and motor and their characteristics. Armature reaction of DC machines. Starting and speed control DC motors. Losses and efficiency of DC machines.

3. Course Structure

Content modules	Number of hours				
and themes title	Total		Incl	ıding	
and themes the		Lect	Prac	Lab.	Indep
1	2	3	4	5	6
	Module 1				
Content module 1 A		DC and	AC circu	uits	
Theme 1. Fundamentals of	10	2	2	2	4
Electrical Circuits.					
Theme 2. Complex circuit	10	2	2	2	4
calculation					
Theme 3. Alternating Current	14	4	2	2	6
Circuits.					
Theme 4. Magnetic circuits and	6	2			4
their analysis.	O .	2			
Content module	4			2	2
Total for content module	44	10	6	8	20
	Module 2				
Content module 2	AC and Do	C Electri	c machir	ies	
Theme 1. Asynchronous	15	2	2	2	9
(induction) Machines.					
Theme 2. Synchronous	11	2		2	7
machines.					
Theme 3. DC electric machines.	16	2		2	12
Content module	4			2	2
Total for content module	46	6	2	8	30
Total	90	16	8	16	50

4. Practical classes

No	Theme's title	Number of
		hours
		Full-time
		education
1	Direct current circuit calculations	2
2	Alternating current circuit	4
	calculations	
3	Analyses of magnetic circuits	1
4	Transformers	1
	Total	8

6. Laboratory Classes

No	Theme's title	Number of hours
		Full-time
		education
1.	Measurements in DC and AC circuits	2
2.	Investigation of single-phase sine current circuits with series connected R,L,C	2
3.	Investigation of single-phase sine current circuits with parallel connected R,L,C	2
	Module 1	2
4.	Investigation of the single phase transformer	2
5.	Investigation of the three-phase Induction motor	2
6.	Investigation of DC generator with shunt excitation	2
	Module 2	2
	Total	16

7. Self study

No		Number of hours
	Theme's title	Full-time education
1	Equivalent generator method	4
2	Voltage and current resonances	6
3	Mutual inductance circuit	4
4	Special transformers	6
	Module 1	2
5	Single phase induction motors	7
6	Special electric motors	9
7	DC machines	10
	Module 2	2
	Total	50

8. Individual Task

9. Teaching methods

Lectures, tutorials (laboratory, exercises, practical classes), individual and self-learning works.

10. Control methods

Current control test, final examination.

11. Assessment criteria and distribution of points that students will receive

11.1. Distribution of points that students will receive (quantitative assessment criteria)

Components of academic	Points for one lesson	Number of classes	Total number of	
work	(task)	(tasks)	points	
Current module 1				
Lecture work	01	4	04	
Implementation and	05	4	020	
protection of laboratory				
(practical) works				
Module work	018	1	18	
Current module 2				
Lecture work	01	4	04	
Implementation and	05	4	020	
protection of laboratory	02	4	08	
and practical works				
Module work	022	1	022	
Total	0100			

Final test (pass/exam) is held in case of refusal of points of current testing and in the presence of admission to the pass/exam. When passing the semester student may receive maximum 100 points.

Exam/pass ticket consists of 2 theoretical and 3 practical tasks. Maximum points for each task -20 points.

- 1. Complex circuit calculations. Node –Voltage method.
- 2. Voltage--resonance.
- 3. Load impedance 36+j48 are connected in delta, and the line voltage across the impedance equals 207.8 V. Calculate phase and line currents, power factor.
 - 4. Basic parameters of magnetic field.
 - 5. Open—circuit and short—circuit tests purposes?

11.2. Quality assessment criteria

Required volume of knowledge to obtain a positive assessment: **student should know**:

- methods of electrical and magnetic circuit calculation;
- design and operational principles of direct and alternating-current electrical devices and field of their application;

student should be able:

- describe the structure, distribution, displacement and movement of electrical charges within materials used in electrical engineering, explain how electrical energy can be produced by: light, heat, friction, pressure, chemical action and magnetism and motion;
- define fundamental terms and units applied to in dc and ac electrical engineering, formulate associated rules and laws, perform the required calculations;
- describe the theory of magnetism, the properties of permanent and electromagnets and effects of magnetic fields.

11.3Assessment criteria of student's work in semester:

- Satisfactory (60-74) describe the structure, distribution, displacement and movement of electrical charges within materials used in electrical engineering, explain how electrical energy can be produced by: light, heat, friction, pressure, chemical action and magnetism and motion; most of the set work, however the report was unacceptable because it failed to compare experiment with Theory or was incomplete or illegible.
- Good (75-89) define fundamental terms and units applied to in dc and ac electrical engineering, formulate associated rules and laws, perform the required calculations; almost all of the set work was done and the report indicated that the student understood what was going on and carefully compared experiment and theory when requested, producing a complete and legible report.
- Excellent (90-100) describe the theory of DC, AC and magnetic circuits calculation; magnetism, the properties of permanent and electromagnets and effects of magnetic fields; the student showed real initiative, e.g. by making comparisons of experiment with theory which were not requested, by carefully investigating an unexpected result by making comments which indicate real insight, or by producing an exemplary report.

12. Grad/mark system: national and ECTS

Score achieved by	Mark on National scale		
student	for examination mark	for test mark	
90 – 100	excellent		
75 – 89	good	passed	
60 - 74	satisfactory		
0 - 59	Unsatisfactory	Failed	

13. Methodological support

- 1. Basic Electrical Engineering / A.Ya. Zimovin, V.N. Postnikov, L.I. Volchanskaya. Kharkiv: National Aerospace university "KhAI", Part 1, 2008 106 p.
- 2. Basic Electrical Engineering / A.Ya. Zimovin, V.N. Postnikov, L.I. Volchanskaya. Kharkiv: National Aerospace university "KhAI", Part 2, 2011 116 p.
- 3. Aircraft Electrical Equipment, manual/ V.N. Postnikov, A.G. Kisly, O.N. Kosychenko, S.N. Firsov, K.F. Fomichev Kharkiv: National Aerospace University, Part 1, 2018.-159 p.
- 4. Electrotechnics and Electronics, manual/ V. N. Postnikov, K.F. Fomichov, A. G. Kisly, O. N.Kosichenko. Kharkiv: Nationak Aerospace University, 2019. -140p.

14. Recommended Reading

Basic literature

- 1. Kasatkin A. Basic Electrical Engineering. Moskow, Mir, 1976, 479 p.
- 2. А. М. Морозов. Электротехника, электроника и импульсная техника. М.: Высшая школа, 1987, 448 с.
- 3. Jimmy J. Cathey, Syed A. Najar. Basic Electrical Engineering. Mc. Graw Hill, 1997, 335 p.
- 4. Giorgio Rizzoni. Principles and Applications of Electrical Engineering. Mc. Graw Hill, 2000, 976 p.
- 5. A textbook of Electrical Technology. / B.L. Theraja, A.K. Theraja, Volume 1. Basic Electrical Engineering, New Delhi, 2004. 800 p.
- 6. Basic Electrical Engineering / U.A. Bakshi, V.U. Bakshi /. Technical Publication Pune, 2009, 628 p.

Additional literature

- 1. Popow V. S., Nicolayev S.A. Basic Electric and Electronics. Moskow, Mir, 1988, 622 p.
- 2. Irving Kosov. Electric Machinery and Transformers Pearson Education, Inc. New Delhi, 1991, 626 p.
- 3. Hand Book of Electrical Engineering. Rajlnder Kumar Dhawan, Delhi, 2004, 711 p.

15. Information Source

- 1. slideshare.net/OmkarRane15/lab.-manual-for-basic electrical and electronic engineering
- 2. studocu.com/en/document/benha-university/mechanical engineering/practical/bee-1|1