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ABSTRACT 

 

Li Fangfang. Design and analysis of efficient methods for providing a desired quality 

in lossy image compression. – Qualifying scientific work on the rights of the manuscript. 

The thesis for a degree of Doctor of Philosophy (PhD) in the field of knowledge 17 

Electronics and Telecommunications in specialty 172 Telecommunications and radio 

engineering. – National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, 2022. 

Lossy image compression has been developed to be an essential tool in the past 

several decades. This is due to the rapid development and broad application of imaging 

technology that has resulted in a sharp increase in the number of images and an increase in 

images size. Compared to lossless compression, lossy compression can achieve a higher 

compression ratio. However, inevitable distortions are introduced, which determine the 

visual quality of decompressed images. Consequently, the visual quality needs to be 

evaluated and distortions need to be controlled in practical applications. 

 

The thesis is devoted to solving the scientific and applied problem of increasing the 

distortion controlling efficiency in lossy compression with controlling parameter 

determination. The object of the study is the controlling of image distortions introduced 

by lossy compression. The subject of the study is the method of providing a desired 

visual quality in lossy compression. 

An analytical review of existing popular lossy compression coder’s performance in 

terms of compression ratio and several visual quality metrics, purpose and requirements of 

visual quality controlling in typical applications, as well as types and characteristics of 

different methods of distortion control are performed in the thesis. It is clear that the visual 

quality of decompressed images impacts further image processing and should be 

controlled carefully. The trade-off between distortion and compression ratio is often 

looked for in lossy compression, and compression control parameters are calculated 

according to this purpose. Based on the various requirements of users, the perceptual 

lossless effect can be demanded, and more flexible desired visual qualities could be set by 

users. It has been shown that the visual quality of decompressed images depends not only 
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on the compression control parameter but also on the complexity of an original image, and 

the encoder adopted. The main problem of existing image lossy compression methods, 

which take account into visual quality, is either unsatisfactory accuracy with an acceptable 

time computation or appropriate accuracy but inappropriate or uncertain time efficiency. 

In the thesis, the actual scientific and applied task of designing lossy compression 

method for providing a desired visual quality, which considers control accuracy of 

different coders combined with analysis of the method efficiency is set and solved. The 

method of predicting visual quality of decompressed image, the two-step lossy 

compression method and the improved adaptive method which groups images based on 

their complexity, the method of multi-channel image lossy compression have been 

designed and analyzed with several visual quality metrics. 

The thesis aims to design efficient method of lossy compression to provide a desired 

visual quality, and analyze the accuracy of distortion control, in particular the lossy 

compression method for the multi-channel image in remote sensing, and to analyze the 

effect of visual quality on the accuracy of classification. 

The scientific results are: 

1) For the first time, a two-step method is proposed to provide the required visual 

quality in gray-scale lossy compression. The average rate-distortion curve obtained offline 

is used to calculate the initial parameters, and the visual quality in the first-step 

compression is corrected by feedback. The results show that, in terms of human visual 

system (HVS)-based metrics, the accuracy of the second-step compression of general 

images is good enough, and the residual error is acceptable. 

2) The method of predicting the visual quality of decompressed images for given 

parameters has been improved and extended to lossy compression encoders based on 

DWT. 

3) The primary two-step method has been modified to enhance its robustness, and 

two methods are used. The first is to correct the constraints of the scheme to reduce the 

errors for high-texture images; the second is to pre-classify images according to their 

complexity and then use adaptively the proper average rate-distortion curve. 
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4) The two-step method has been extended to color and three-channel images, and its 

application in remote sensing has been discussed. The results show that the classification 

accuracy of compressed images is roughly the same as for the original (uncompressed) 

data if there are no visually noticeable distortions. In addition, it is possible to control the 

quality of 3D compression. The compression ratio it produces is twice that of wise-

component compression, and the probability of correct classification is slightly higher. 

 The study has been carried out for DCT-based coders (including AGU and ADCTC), 

DWT-based SPIHT coder and novel BPG coder, and the universality of the method for 

different images has been discussed. It is shown that the method works well for various 

coders considered. Specifically, the results of DCT-based coders and BPG are slightly 

better than the DWT-based SPIHT coder.  Good results can be obtained for normal images, 

including highly textured images, and the method application for strange images, which 

has a non-monotonic rate-distortion curve, should be cautious.  

The results of the work have been used in research studies of the National Aerospace 

university named after M. E. Zhukovsky “Kharkiv Aviation Institute” and Nanchang 

Hangkong University.  

According to the thesis materials, 17 papers were published.3 of them are articles in 

journals of Ukraine, 2 articles have been published in foreign country periodical journal 

(Q1, Switzerland), among them 4 articles are included in the international scientific metric 

database SCOPUS, 12 – publications are in conference proceedings (12 in international 

conferences included in the international scientific metric database SCOPUS). 

Key words: image lossy compression, visual quality metric, average rate-distortion 

curve, two-step method, grayscale, three-channel image, complexity. 
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INTRODUCTION 

 

Rationale for choosing a research topic. In this modern information age, images 

have been widely used in various fields since they can record richer content than text data 

forms, e.g., in security[1], intelligent medical[2, 3], remote sensing[4-6], and other 

technical fields, as well as daily life[7, 8].Simultaneously, image technology has 

developed rapidly with the research and improvement of various image sensors, such as 

optic, ultrasound, and radar. Nevertheless, a general tendency of high technical image 

devices is to acquire data with higher resolution and/or more frequently. 

In the past two decades, the mobile phone camera has developed from the initial 110 

thousand pixels to hundreds of millions of pixels now, allowing users to take high-

resolution images conveniently[9]. Moreover, combining with social media applications 

leads to millions of image data being uploaded and downloaded worldwide every second[7, 

10].With mobile Internet development, images and video files have become important 

social networking and information transmission carriers. The imaging quality and effects 

of Smartphone cameras have become the competition for Smartphone manufacturers in the 

mobile phone market. This also occurs in remote sensing systems, which have been 

developed to have an extremely high spatial resolution of up to 0.25m[11], as well as 

nanometer-level spectral resolutions[12]. Based on this, remote sensing is one of the 

critical investment and priority fields of many countries around the world. This is 

evidenced by the scientific and technical Ukraine’s space program for 2018-2022[13], 

China's High Resolution Earth Observation System[12, 14, 15], and world system 

observation of the “Global Earth Observation System of Systems”[16]. 

Images of high definition help a user to make decision or analysis easier and give a 

viewer a better visual perceptive experience. However, it also results in a larger size and 

massive volume of images. It runs into typical big data problems when there are 

difficulties with image processing, transferring, storage, and dissemination[17]. 

Limitations on a storage volume, communication line bandwidth and available data 

transferring time lead to necessity to compress images[18].Consequently, alongside the 

development of imaging technology, many scientists focus on image compression research, 
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which has gradually become a hot topic[19-21]. In general, image compression can be 

divided into two categories, namely lossless compression and lossy compression, 

respectively. Lossless compression is conducted by removing redundancy in an image, and 

the image can be restored after compression/decompression without distortion. It is often 

used in intelligent medical[3], security[1], and other applications where any distortion can 

result in an improper diagnosis. However, the small compression ratio (CR) is achieved in 

lossless compression, about 1,2~5[3, 22, 23],which does not meet the expectation of the 

user in most applications. On the contrary, the lossy compression can easily break the 

upper limit and achieve a higher CR, with the expense of a certain amount of distortion. 

For the significant size reduction, lossy compression is widely used in many applications, 

where distortion is accepted to a certain degree and does not affect further image 

processing tasks or user perception[24-27]. 

The goal of the current lossy compression technique is to design advanced 

compression techniques with higher CR and better visual quality of the decompressed 

image. However, an inevitable law is that CR increasing leads to worse quality for any 

image and any lossy compression coder but at different degree. Consequently, two 

important factors should be considered in lossy compression implementation, CR and 

visual quality, respectively. An appropriate compromise is needed to be provided for lossy 

compression in real applications or engineering practices, that the visual quality of the 

decompressed image does not have negative influence on further image processing or 

viewing, and the CR is as high as possible for an adopted coder. If the terminal is human, 

the bad visual quality will cause the difference between decompressed image and the 

original one easy to distinguish. This means the degree of distortion is noticeable and 

seriously affects visual perception. Suppose an image needs to be processed by a computer, 

for example, for object classification and detection in remote sensing. In that case, severe 

distortion will cause a significant decrease in classification accuracy or misjudgment of 

target detection. In these two cases, a better visual quality should be provided in lossy 

compression, even if the cost is a reduction in CR. This principle is also valid for other 

applications because compression is an intermediate process, and use is the ultimate goal. 
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Therefore, it is extremely necessary to provide high CR and reliable image quality in lossy 

compression. 

Despite the often quite high performance of existing lossy compression coders, the 

distortion is unavoidable and affect the quality of the decompressed images. The distortion 

produced by lossy compression is diverse, which is related to the image compressed and 

the encoder adopted. Lots of work are devoted to the study of distortion in lossy 

compression, the popular method is to preset a metric value describing the desired image 

quality with respect to the original image[24, 27-33].Scientists conducted intensive 

research in image quality evaluation, and a variety of excellent metrics have been 

proposed[33-38]. The distortion level can be characterized by quality metric value; 

therefore, it can be inferred from this value whether the compression can be reasonably 

applied to the corresponding application and does not have negative influence. 

For the better operation, the compression should be controlled in terms of visual 

quality determined by the specific applications and, simultaneously, the CR to be 

maximized in order to obtain both efficiency and reliability. Besides, such a method also 

needs to balance the accuracy and cost, including time-efficient and computation 

complexity, in particular, for real-time communication and application platforms with 

limited resources. As a general rule, there are some parameters in the lossy compression, 

which can be utilized to control the compression. However, the visual quality of 

decompressed images depends not only on the compression control parameter (CCP) but 

also on a coder adopted and an image to be compressed. Additionally, compression 

efficiency depends on the choice of visual quality metric to evaluate image distortion, 

ways of image information extraction, CCP calculation, modifications to reduce the error, 

and so on. Besides, it is necessary to analyze the efficiency of such a method in a 

particular application, whether the provided quality is accurate enough not to have a 

negative impact. 

In this regard, the current scientific and applied problem, which is solved in this 

dissertation, is the development of efficient methods of lossy compression, which aim to 

provide a desired quality for decompressed image to guarantee the distortion introduced by 
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lossy compression does not influence the further image processing or terminal user’s 

perception. 

The object of study is the controlling of images distortions introduced by lossy 

compression. 

The subject of the study - the method of providing a desired visual quality in lossy 

compression. 

The purpose and objectives of the study. The purpose of the dissertation is to 

design efficient methods of lossy compression to provide a desired visual quality, and 

analyze the accuracy of distortion control, in particular the lossy compression methods for 

the multi-channel image in remote sensing, and analyze the effect of visual quality on the 

accuracy of classification. 

Under the goal in the dissertation, the following main tasks are formulated and solved: 

‐analysis of the requirements to lossy compression techniques; 

‐ study and improvement of the method of predicting the visual quality of 

decompressed images for lossy compression; 

‐ design and improvement of the two-step method of grayscale lossy compression for 

providing a desired visual quality; 

‐ extension of the two-step method to color and three-channel RS images; 

‐ analysis of the distortion controlling in the lossy compression for the classification 

processing of remote sensing three-channel images. 

Research methods. To solve the tasks in the dissertation, the following methods 

were used: the methods of numerical modeling to build a model curve of rate-distortion, 

mathematical to predict the decompressed image quality corresponding to the CCP, 

function interpolation to correct the parameter, machine learning to build multilayer neural 

networks and analyze the effect of image quality error on the probability of remote sensing 

classification accuracy, probability theory and mathematical statistics to analyze the 

accuracy of providing a desired quality. 

The scientific novelty of the results obtained by the author is as follows: 

1) For the first time, a two-step method is proposed to provide the required visual 

quality in gray-scale lossy compression. The average rate-distortion curve obtained offline 
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is used to calculate the initial parameters, and the visual quality in the first-step 

compression is corrected by feedback. The results show that, in terms of human visual 

system(HVS)-based metrics, the accuracy of the second-step compression of general 

images is good enough, and the residual error is acceptable. 

2) The method of predicting the visual quality of decompressed images for given 

parameters has been improved and extended to lossy compression encoders based on 

DWT. 

3) The primary two-step method has been modified to enhance its robustness, and 

two methods are used. The first is to correct the constraints of the scheme to reduce the 

errors for high-texture images; the second is to pre-classify images according to their 

complexity and then use adaptively the proper average rate-distortion curve. 

4) The two-step method has been extended to color and three-channel images, and its 

application in remote sensing has been discussed. The results show that the classification 

accuracy of compressed images is roughly the same as for the original(uncompressed) data 

if there are no visually noticeable distortions. In addition, it is possible to control the 

quality of 3D compression. The compression ratio it produces is twice that of wise-

component compression, and the probability of correct classification is slightly higher. 

Personal contribution of the applicant. All the main results of the dissertation 

were obtained by the author herself. Article [39] was published without co-authors. The 

following results belong to the application in the works published in co-authorship. 

In [40], the applicant proposed an approach to predict the visual quality value of  

decompressed image for the coder AGU based on discrete cosine transform(DCT) using 

statistical information extracted from a limited number of 8×8 pixel blocks. In [41],the 

applicant exploited  the prediction method to the coder SPIHT based on discrete wavelet 

transform (DWT). In [42, 43], the applicant proposed a two-step method to provide a 

desired visual quality in lossy compression of gray-scale images, the coders AGU and 

BPG were adopted, average rate-distortion curve model was obtained off-line and utilized 

to calculate the appropriate CCP, the classic metric PSNR and HVS-based metrics were 

employed to characterize the quality of decompressed images. In[44], the applicant 

presented a simple modification of correction scheme of CCP in the second step in AGU 
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coder to reduce the errors in terms of PSNR. In  [18, 45], the applicant exploited the 

simple modification scheme for ADCT and SPIHT coders, respectively. In [46],the 

applicant proposed an optimization scheme to choose the proper average rate-distortion 

curve model adaptively according to the image complexity, which was determined by the 

prediction procedure. In[39], this adaptive method was exploited to DWT-based coder 

SPIHT, and the prediction algorithm was utilized to pre-grouping in terms of images 

complexity. 

In [47], the applicant improved the optimization scheme by adopting entropy to 

characterize the image complexity, which helps speeding up the algorithm. Besides, it is 

possible to find “strange” images which produce the largest errors in providing a desired 

quality of compression. In [48], the applicant chose special basic images as basic image set 

to obtain the average rate-distortion curve for remote sensing image, and proposed a 

combination scheme of derivative and tangent to reduce the final error in two-step method. 

In [49-52],the applicant exploited the method of providing a desired visual quality in lossy 

compression to color images and three-channel remotes sensing images, and adopted an 

automatic optimization method for BPG coder, 3D approach for AGU coder, employed the 

metrics PSNR-HMA, MDSI and FSIM to evaluate the decompressed color images quality. 

In[53], the applicant considered three widely used classifiers, namely, support vector 

machine, multilayer perception, and logistic regression, studied the effectiveness of 

multilayer classification on a real satellite image compressed with distortions characterized 

by PSNR-HVS-M, performed the analysis of classification accuracy for overall probability 

of correct recognition of classes in the images. In [54], the applicant studied the  

dependence between the classification accuracy of maximum likelihood and neural 

network classifiers applied to three-channel test and real-life images and quality of 

compressed images characterized by standard and visual quality metrics. In [55],the 

applicant proposed an approach to lossy compression, which is based on providing quality 

of compressed images not worse than desired according to quality metrics, and 

investigated the effect of distortion of decompressed image on  classification accuracy in 

remote sensing images. 
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The list of the applicant's publications on the topic of the dissertation is given in 

Appendix A. 

Approbation of dissertation materials. The main provisions of the dissertation were 

reported and discussed at all-Ukrainian Scientific and Technical Conference "Integrated 

Computer Technology in Mechanical Engineering" (2020, Kharkiv, Ukraine), 

International Conference "Dependable Systems, Services and Technologies" (2020, Kyiv, 

Ukraine), International Conference "Electronics and Nanotechnology" (2020, Kyiv, 

Ukraine), International Conference "Advanced Trends in Radioelectronics, 

Telecommunications and Computer Engineering" (2020, Lviv-Slavske, Ukraine), 

International Conference "Advanced Trends in Information Theory" (2020, 2021, Kyiv, 

Ukraine), International Conference "Electronic Information Technology and Computer 

Engineering" (2020, Xiamen, China), International Conference " Radioelektronika" (2020, 

Bratislava, Slovakia),  International Conference "Image and Signal Processing for Remote 

Sensing" (2021,Online Only, Spain), International Conference "Mathematical Modeling 

and Simulation of Systems" (2021, Chernihiv, Ukraine),  International Conference 

"Applied Mathematics, Modeling and Computer Simulation" (2021, Wuhan, China), 

International Conference "Information and Telecommunication Technologies and Radio 

Electronics" (2021,Kyiv, Ukraine). 

Connection of work with scientific programs, plans, themes, grants. The research 

presented in this dissertation was conducted at the Department of Information and 

Communication Technologies named after O.O. Zelensky National Aerospace University. 

ME Zhukovsky "KHAI" and were reflected in the following reports on research: the 

Project М/94-2021 (504-22/2021, (state registration No 0120U103595)«Methods of 

intellectual image and video processing based on visual quality metrics for emerging 

applications», 2021; the Project Д504-2/2018-Ф(state registration No 0018U003020) 

“Methods of intellectual computer processing of big data in remote sensing, multimedia 

and telecommunications”, 2020; the Project Д504-2/2021-Ф(state registration No 

0121U112176) “Methods of multichannel image processing in mobile systems based on 

prediction and machine learning”, 2021.   

The practical significance of the results: 
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• developed a very fast method for predicting decompressed image quality by 

calculating information from a certain number of random blocks of an image in 

compression, the accuracy of which is 0,88-0,95 for different quality metrics according to 

criterion R2(coefficient of determination); 

• proposed the universal two-step image compression approach to provide the desired 

image quality, where the average rate-distortion curves obtained offline are utilized to 

calculate the initial CCP value, and the quality feedback after the first step compression is 

used to effectively correct the parameters; 

• in the proposed compression method, such quality metrics are applied that they are 

characterized by the highest values of the Spearman rank correlation with the average 

opinion of humans, and it is in line with real-life application requirements; 

• It is proved that the basic correction scheme of CCP allowed improving the 

accuracy for different types of images in AGU and BPG coders (reducing variance at least 

by 10times compared to the initial CCP in terms of HVS-based metrics), which contributes 

to provide a desired quality without noticeable distortions; 

• For complex images (in particular, high-texture images or remote sensing images) 

and different coders, the optimization correction scheme and the adaptive curve model 

have been proposed, which allowed solving the over-correction problem (reduce variance 

by 2-10 times compared to the initial CCP in terms of PSNR and HVS-based metrics), 

make it possible to guarantee that the correction of CCP is performed in the right way. 

• It is proved that the proposed lossy compression method of providing a desired 

quality also applies to color images and three-channel remote sensing images, and the 

reasonable ranges of images quality are given in terms of different metrics, which 

contribute to set the desired image quality. 

• Analysis of the effect of the controlling image quality on remote sensing 

classification, where different classifiers are considered, and two compression method are 

employed, has proved that classification accuracy of images compressed without visually 

noticeable distortion is approximately the same as original one (the threshold is about 40-

42dB in terms of PSNR-HVS-M). 
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Publications. The main results of the dissertation are published in 17 works, 

including: one articles in scientific journals of Ukraine, which are included in international 

scientific metric databases (Index Copernicus, Google Scholar), two articles in scientific 

journals of Ukraine, which are included in international scientific metric databases 

SCOPUS, two articles in a scientific periodical of foreign country (MDPI, Switzerland), 

which are indexed in SCOPUS (Q1), 12 papers in proceedings of International scientific 

conferences, the materials of which are included in the scientific metric database SCOPUS. 

The structure and scope of the dissertation. The dissertation consists of an abstract, 

table of contents, list of abbreviations, introduction, four sections, conclusions, a list of 

used sources and appendices. The full volume of the work is 224 pages of printed text, of 

which the abstract - by 3 pages, the table of contents - by 4 pages, the list of abbreviations 

- by 1 page, the main text - by 184 pages, the list of 225 used sources - by 23 pages, 

appendices - 6 pages. The dissertation contains 78 figures (7 of them on 6 separate pages), 

76 tables (30 of them on 10 separate pages). 
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CHAPTER 1 

PROVIDING A DESIRED QUALITY IN LOSSY COMPRESSION 

 

The section considers the main types and characteristics of image compression, the 

features of popular lossy compression coders, the requirements to lossy compression 

techniques. In addition, lossy compression methods that take into account visual quality, 

and approaches to assessing their effectiveness are considered. 

 

1.1 Application and technologies of digital imaging 

1.1.1 Applications of digital images 

 

As a visualized and intuitive description of objective objects, the image can convey 

rich information to humans through vision. It has also become the most crucial source of 

human visual information. People share their life, study, and work by transmitting 

multimedia information such as images and videos through the Internet. With the 

continuous development of the Internet, particularly the fifth mobile communication 

network 5G, people lifestyles have changed significantly. Various Smartphone 

applications such as Instagram, Facebook, Webchat, Twitter make people’s socializing 

methods more and more diversified and convenient. 

On the other hand, in science and technology, images are also playing a more 

important role. For example, this happens in remote sensing systems, Smart medical, 

security, industrial testing, and detection. It can be said that the current image techniques’ 

applications are in various fields. Some examples are shown in Fig 1.1. Let us consider 

some types of images more in detail.  

1) Remote sensing images. The development of low-cost airborne hyper spectral 

sensors and other imaging devices has facilitated the wider application of remote sensing, 

including monitoring of crop growth status and assessment of crop yield[56, 57]; 

ecological environment monitoring such as forests and wetlands[58-60]; mapping and 

architectural planning[61]; emergency disaster prevention and control[62, 63], and other 

civilian and military applications[64]. 
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Figure 1.1–Examples of digital image applications 

2) Medical images. Magnetic resonance imaging (MRI) and Computed tomography 

(CT) scans are used to quantify tumors, Positron emission tomography (PET) and 

functional MRI scans are utilized to detect regional metabolic brain activity[2, 3, 

65].Medical imaging has also become a great method to combat the COVID-19 outbreak 

and it helps controlling the pandemic crisis[66]. 

3) Security. Biometric images are being used increasingly in security technology, 

where fingerprint and face are utilized for identification. Large-scale touch-based 

fingerprint recognition systems are not only used worldwide by law enforcement and 

forensic agencies but are also deployed in Smartphone applications[1, 67]. Driven by 

computer hardware and imaging technology development, Face recognition has been 

applied widely to daily lives, such as access control, video surveillance, etc. [68, 69]. 

4) Communication. Nowadays, People use the self-help shooting of Smartphone 

cameras to record videos of family and friends. This results in the fact that quality of 

Smartphone camera photos is becoming one of the dominant considerations when 

consumers purchase Smartphone[70]. Furthermore, these images are shared on the social 

media platforms, uploaded, downloaded, and viewed via different types of communication 

lines, including wireless ones[18]. In addition, through photocopying of important paper 

handwritten materials, information exchange and preservation in commercial activities can 

be better achieved. 

5) Industry. Under the background of industry 4.0, Quality inspection is an essential 

component of smart manufacturing systems. The powerful and affordable digital cameras 
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and machine learning algorithms have elevated the potential of computer vision in quality 

inspection applications to a new level[71]. In Non-Destructive Testing (NDT), ultrasound 

imaging is a helpful tool for detecting flaws or measuring corrosion in metal pipes, and 

other equipment flaw detection applications[72]. 

1.1.2 Related technologies of digital image processing 

In these applications, images need to be acquired, subsequent processing and analysis 

are required; in addition, these images need to be transmitted, stored, and displayed. The 

entire digital image processing system is shown in Fig.1.2. Therefore, with the 

development and widespread use of digital images and imaging technology, many related 

technologies have also been derived. 

Figure 1.2–Digital image processing system 

First, an analog image obtained by the imaging sensor array often needs to be 

discretized to obtain a digitally represented image. This process includes discretizing the 

spatial coordinates (sampling) and the discretization of the grayscale (quantization).An 

analog image is thus converted to the digital image (Fig.1.3), which can be expressed and 

processed in a computer through a matrix, such as a formula (1).Each gray value in the 

matrix corresponds to a pixel in the image, and the color image is composed of three RGB 

channels, respectively represented by three gray value matrices (or in some other color 

system).The properties of digital images depend to a large extent on the number of 

samples and gray levels used in sampling and quantization. 
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a                                  b 

Figure 1.3–The process of digitizing images, a) analog image, b)results after sampling and 

quantification. 

𝐴 = [

𝑎0,0 𝑎0,1 … 𝑎0,𝑁−1

𝑎1,0 𝑎1,1 … 𝑎1,𝑁−1

⋮ ⋮ ⋮ ⋮
𝑎𝑀−1,0 𝑎𝑀−1,1 … 𝑎𝑀−1,𝑁−1

] (1.1) 

Second, a digital image is usually processed or analyzed by serial algorithms. Image 

processing usually outputs images, including image enhancement[73-75],image fusion[4], 

image compression[19, 20, 23], etc.; Image analysis often output images properties, 

including image segmentation[76-78], pattern recognition[1, 79],etc. Consider these 

operations more in detail. 

1) Image enhancement. The purpose is to enhance the valuable information in the 

image through smoothing and/or sharpening and other methods to suppress noise enhance 

edge and texture information to improve the image visual effect. An example is restoration 

of images captured in harsh conditions such as low-light [73-75]. 

2) Image fusion. The goal of image fusion is to integrate the complementary or 

redundant information obtained by different imaging equipment or different imaging 

modes for the same scene or the same target into an image, to facilitate human observation 

and understanding or further computer processing[4, 6, 80]. 

3)Image compression. It is also known as image coding that stores and transmits 

digital images with the smallest possible amount of data by removing statistical 

redundancy, spatial redundancy, irrelevant information, and coding redundancy[21, 29, 

81-85]. 

4) Image segmentation. An image is divided into several disjoint regions according 

to features such as grayscale, color, spatial texture, geometric shape, etc. These features 



 

 

26 
 

show consistency or similarity in the same region but apparent differences in different 

regions. Its goal is to separate the target from the background in an image to achieve tasks 

such as classification[76, 78, 86, 87]. 

5) Pattern recognition. This direction relates to study how to use computers to 

simulate or realize human learning activities, through the extraction of image features, to 

establish recognition and classification models for things, in face recognition, fingerprint 

recognition, optical character recognition, natural language processing, and many 

Information management systems fields are widely used[79, 88]. 

Finally, digital image information is transferred via a communication line, saved to a 

storage medium, and viewed on display. 

 

1.2 Image compression 

 

Digital image data have brought convenience to the transmission of information and 

decision-making. However, at the same time, the massive amount of image data has 

continuously increased the requirements for platform storage resources and network 

transmission bandwidth. Original image requires considerable storage capacity and 

transmission bandwidth. Despite rapid development in mass-storage density and digital 

communication system performance, demand for image storage capacity and transmission 

bandwidth still outpace the capabilities of available technologies[89].Therefore, the 

effective image compression techniques are essential and becoming to be the most 

significant in the image processing field. 

 

1.2.1 A review of image compression 

 

Image compression aims to express as much image information as possible with as 

little data as possible. In this way, the image can be transmitted at limited bandwidth. The 

transmission efficiency can be improved; many images can be stored in the limited 

capacity, and the space utilization rate can be improved. 
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Before image compression, algorithms such as filtering and denoising may be used 

for image enhancement and image fusion to improve the quality of an image. After the 

image is compressed, it can be stored locally or transmitted remotely. When the user needs 

to browse or complete object recognition, classification, and other image understanding 

tasks through image analysis algorithms, the compressed image needs to be decompressed 

first. Image compression is closely related to all aspects of digital image systems. With the 

vigorous development of digital images, image compression technology has also attracted 

more attention and has become a hot research topic. 

Since the digitization of television signals was proposed in 1948, people have begun 

to study image compression coding. In 1952, Huffman proposed the "minimum 

redundancy construction method"[90] and described his algorithm for producing optimal 

codes of integer length. In 1975, arithmetic coding was introduced by Rissanen, and this 

coding technique may be regarded as successfully approaching the limit of information 

entropy[91].  In 1984, Chen and Pratt applied the discrete cosine transform (DCT) 

technique to image compression[92].  In 1986, the Joint Photographic Experts Group 

(JPEG) team was created to develop a compression standard for still images[93]. In 1992, 

Lewis and Knowles used the 2-D wavelet transform in image compression[94], the most 

widely used coding method currently, and it has been maintained and optimized since then. 

More versions were released, such as JPEG 2000[85], JPEG XS[95],etc. With the 

continuous development of deep learning, it has become one of the hot research topics 

how to apply deep learning in image compression to obtain a higher compression ratio and 

higher quality[96, 97]. 

A range of compression methods have been developed to address main challenges 

faced by digital imaging over the past few decades. In general, these image compression 

technologies are divided into two categories, lossless compression and lossy compression, 

it concerns the quality of an image after decompression. The two groups of methods use 

different implementation algorithms and are suitable for different applications. 

 

1.2.2 Lossless compression 
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Lossless compression is generally implemented in two steps: first, the original images 

are transformed to some other format, and the inter-pixel redundancy is minimized during 

this process; second, the symbol encoder is utilized to remove the coding redundancy. An 

inverse process is conducted while the lossless compressed image be decompressing (Fig. 

1.4)[89]. 

Figure 1.4 –Lossless image compression process 

Transform: Removal in image redundancy is typically achieved by transforming the 

original image data from one form of representation to another[22].Some of the popular 

transformation techniques are Discrete Fourier Transform (DFT), Discrete Cosine 

Transform (DCT), Discrete Wavelet Transform (DWT), and others, each has advantages 

and disadvantages[89]. 

Symbol coding: The encoding process generates fixed-length or variable-length codes, 

minimizing code redundancy without any information loss. There are some outstanding 

entropy coding algorithms, such as Huffman coding, arithmetic coding, and their 

variations as context-adaptive variable length coding, context-adaptive binary arithmetic 

coding, and dictionary-based coding[89, 98]. The symbol decoding is the exact inverse 

process of the symbol encoding, which restores the original image from the encoded 

binary codeword[99, 100]. 

The information is completely restored in lossless compression, and the 

decompressed image is identical to the original image. For lossless compression, an 

important measure is compression ratio (CR), which is calculated as follows,       

𝐶𝑅 =
𝐵𝑜

𝐵𝑐
（1.2）                            
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where, Bo is the size of the original image in bytes, and Bc is the compressed file size in 

bytes. 

Besides, the lossless compression algorithms are also compared in view of another 

parameter, time complexity, which is the total time required to compress and decompress 

the images. 

The implementation of most compression algorithms is often not based on only one 

specific encoding method, but a combination of multiple encoding methods is used. This 

approach helps to improve the compression ratio but also increases the time complexity. 

Lossless compression techniques are commonly used to compress medical images, 

archive scans, biometric images, and other high-value images where the data loss is 

intolerable. The theoretical limit of lossless compression is information entropy. It is 

required that the amount of information is not lost during the encoding process. Therefore, 

the compression ratio is limited, and the average value is about 1,2~5[3, 22, 23].However, 

the image can be restored without loss in this compression method. 

 

1.2.3Lossycompression 

 

If the decompressed image is not precisely the same as the original image, the image 

compression technique is a lossy one. Unlike the lossless compression, almost all lossy 

compression algorithms are conducted in three stages: first, a transform is used to remove 

the inter-pixel redundancy; second, a quantizer is utilized to eliminate the psycho-visual 

redundancy; third, a symbol coder is applied to get extra compression from the coding 

redundancy (Fig. 1.5). Decompression is the reverse process. 

Transform: Similar to the algorithm in lossless compression, the image gray value 

matrix is mapped by DCT or DWT to a coefficient matrix. 

Quantization: This step is the key to the difference between lossy compression and 

lossless compression. Quantization is several to one mapping that replaces a set of values 

with only one value, and the process is non-reversible. The loss occurs due to some 

insignificant information being discarded, which is treated as psycho-visual 

redundancy[98]. Nevertheless, of course, this discarding also results in a higher 



 

 

30 
 

compression ratio and dictates the quality of the reconstructed image. An example of DCT 

quantizer code is given in Fig.1.5. 

 

Figure 1.5–Lossy image compression process 

1）a block of 8×8 DCT coefficient matrix is: 

B = 

[
 
 
 
 
 
 
 
−415 −33 −58 35 58 −51 −15 −12

5 −34 49 18 27 −5 1 3
−46 14 80 −35 −50 7 19 −18
−53 21 34 −20 2 36 34 12
9 −2 9 −5 −32 45 −15 37

−8 15 −16 7 −8 4 11 7
19 −28 −2 −26 −2 −44 7 −21
18 25 −12 −44 35 −37 48 −3 ]

 
 
 
 
 
 
 

   （1.3） 

Low-frequency components (low-frequency signals) represent slowly changing areas 

in the image, describing the central part of the image. High-frequency components (high-

frequency signals) correspond to the parts of the image that change drastically: the edges 

or noise and details of the image. Discrete cosine transformation is performed on the 

original image, and in the DCT coefficient matrix after transformation, the low-frequency 

components are mainly concentrated in the upper left corner[85]. 

2) A common quantization matrix: 

Q = 

[
 
 
 
 
 
 
 
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 201
72 92 95 98 112 100 103 99 ]

 
 
 
 
 
 
 

                          （1.4） 
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Where each element in the matrix is the quantization step, and the quantization step of 

each coefficient is inconsistent. In practical applications, the quantization step can be 

multiplied by the quantization matrix Q by a scale factor to obtain an appropriate 

quantization step[101]. 

3) the DCT coefficient matrix is divided element-wise by the quantization matrix and 

then rounded to integers to obtain the quantization result. 

𝑌 =

[
 
 
 
 
 
 
 
−26 −3 −6 2 2 −1 0 0
0 −3 4 1 1 0 0 0

−3 1 5 −1 −1 0 0 0
−4 1 2 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

(1.5) 

For example, using -415(the DC coefficient) and rounding to the nearest integer 

𝑌𝐵
𝑄(𝑚, 𝑛) = 𝑟𝑜𝑢𝑛𝑑 (

𝐵(𝑚, 𝑛)

𝑄(𝑚, 𝑛)
) = 𝑟𝑜𝑢𝑛𝑑 (

−415

16
) = −26 (1.6) 

Symbol coding: The new data generated after quantization is minimal, and many are 

zeroes. Such a matrix can significantly reduce the amount of data by symbol encoding.                                    

In this type of compression, data degradation and loss of quality are expected while it 

produces higher compression rates and smaller compressed data size than the lossless 

methods. The basic principle is that the coefficients at different positions are quantized 

with different quantization step sizes. The human eye is less sensitive to distortions in high 

frequencies. The low-frequency components are quantized in small steps, and the high-

frequency components are quantized in larger steps. This approach improves compression 

efficiency while maintaining subjective quality. 

The lossy compression techniques are mainly applied in natural images, such as 

images shared in social media[102], civil remote sensing images[103, 104], and other 

applications where the tiny and, sometimes, imperceptible loss is acceptable. 

 

1.3 Existing lossy compression coders 

 



 

 

32 
 

There are various lossy compression algorithms, and many compression coders are 

designed based on these algorithms. Different encoders have their specific characteristics 

and are suitable for different applications. Concerning lossy compression algorithm 

performance comparison, CR and image quality are the main two measures, and time 

complexity should also be properly considered in some cases. In [105], four popular lossy 

compression algorithms are analyzed and compared: DCT, DWT, vector quantizer(VQ) 

compression, and Fractal compression, respectively. Peak Signal to Noise ratio (PSNR) 

was utilized to evaluate the decompressed image quality referring to the original image. 

The DWT-based coder provides high compression ratio and is strongly recommended for 

lower bit rates; The VQ compression has low time complexity but is not suitable for low 

bit rate; DCT coder and fractal coder are conditionally applicable to low bit rates.  In[106], 

a comparison was taken between Singular Value Decomposition (SVD) and DCT 

compression techniques. The DCT compression technique can effectively reduce the 

mammogram image size by 65% from the original size without affecting the suspicious 

regions such as micro calcifications. In comparison, the SVD compression technique can 

reduce the image by 33% from the original image size. In [107], the study on major IoT 

applications indicates that Discrete Cosine Transform (DCT) and Fast Walsh-Hadamard 

Transform (FWHT) generate higher compression ratios than others. Lossy Delta Encoding 

(LDE) significantly outperforms others in terms of information loss. The impact of 

introduced error is much more severe in DCT and FWHT, while LDE maintained a 

relatively lower error rate than other methods. 

To sum up, it can be seen that different compression algorithms have their applicable 

occasions. Different coders are developed in the continuous optimization, such as 

AGU[108],ADCTC[109],SPIHT[5, 110], JPEG[93], JPEG2000[25, 85], BPG[111-113], 

etc. 

 

1.3.1 DCT-based coders 

 

DCT is an invertible linear transform and is widely used in the field of image 

compression, where it is used to separate the image into different important parts relative 
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to the visual quality of the image. The transformation rule of DCT is similar to the 

Discrete Fourier Transform, but using only real numbers,  it transforms a signal or an 

image from the spatial domain to the frequency domain[114]. For the convenience of 

operation, the image is divided into many 8×8 (or other size) blocks, where each element 

falls in the range [0,255] for an 8-bit image, then this range is modified by shifting from 

[0,255] to [-128,127]. Finally, the images are separated into parts of different frequencies 

by the DCT[115], where the following equations are employed. 

The forward 2D-DCT transformation: 

𝐹(𝑢, 𝑣) =
2

𝑁
𝐶(𝑢)𝐶(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦) cos [

𝜋(2𝑥 + 1)𝑢

2𝑁
] cos [

𝜋(2𝑦 + 1)𝑣

2𝑁
]

𝑁−1

𝑦=0

𝑛−1

𝑥=0

 

u=0,…, N-1 and v=0,…,N-1 where N=8 and  𝐶(𝑘) = {
1

√2
     𝑓𝑜𝑟 𝑘 = 0

1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (1.7) 

     the inverse 2D_DCT transformation: 

𝑓(𝑥, 𝑦) =
2

𝑁
𝐶(𝑢)𝐶(𝑣)𝐹(𝑢, 𝑣)𝑐𝑜𝑠 [

𝜋(2𝑥 + 1)𝑢

2𝑁
] 𝑐𝑜𝑠 [

𝜋(2𝑦 + 1)𝑣

2𝑁
] 

x=0,…, N-1 and y=0,…, N-1 where N=8                                          (1.8)  

After DCT transformation, the first frequency in the set is the most meaningful; the 

latter, depending on the allowable loss of resolution, the minor significant frequencies can 

be removed (see equation (1.3)). Generally, an 8 × 8 transform coefficient array in which 

the (0,0) element (top-left) is the DC (zero-frequency) component and entries with 

increasing vertical and horizontal index values represent higher vertical and horizontal 

spatial frequencies. 

Some coders are developed based on DCT, but with different optimizations, the 

representatives are JPEG, AGU, and ADCTC. 

JPEG: The most popular DCT-based lossy compression coder is JPEG. The JPEG 

coding architecture is optimized for compression efficiency at even very low bit-rates and 

optimized for scalability and interoperability in the networks and noisy mobile 

environments[93, 101]. The coefficient matrix of image blocks is quantized with a uniform 

or non-uniform scalar quantizer, Zig-zag scanned and entropy coded with Huffman 

coding[116]. Quality Factor (QF) is one of the most critical parameters utilized to control 
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the compression. It is an integer between 0 and 100 and is used to scale the values in a 

quantization matrix. The Zig-zag scanned method is shown in Fig.1.6. The non-zero data 

is concentrated in the front end (recalling equation (1.5)), and this data arrangement is 

beneficial to improve the Huffman coding efficiency, thereby reducing the data size. 

 

 

 

 

 

 

 

 

Figure 1.6 –Zigzag scanning in JPEG coder 

AGU serial coder: AGU is a DCT-based coder, but it provides decompressed image 

quality better than DWT-based coder JPEG2000by up to 1,9dB.The compression 

efficiency is improved by the following measures: an image is divided into 32x32 pixel 

blocks; the quantized DCT coefficients are divided into bit-planes, and DCT based 

filtering[117] is used as post-processing for removal of blocking artifacts from decoded 

images, thereby improving decoded image quality[108], the block-diagram of AGU coder 

isshowninFig.1.7. 

 

Figure 1.7 – The block-diagram of AGU image coding 

In the quantization stage, a uniform quantizer is used to ensure the best results within 

the structure of the considered method. In the bit-plane stage, the obtained bit-planes are 

coded in the order starting from higher bits to lower ones. While coding each next plane, 

the values of bits of earlier coded planes are taken into account. A coded bit is referred to 

one or another group of bits according to the values of already coded bits. For each group 

of bits, an individual probability model is used for dynamic arithmetic coding[108]. 
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AGU-MHV is a new high-quality DCT-based method. Its modification is that an 

image is divided into blocks of different sizes by a rate-distortion-based modified 

horizontal-vertical partition scheme(PS), which produces higher CR than JPEG, SPIHT, 

and JPEG2000[118]. However, one of the bottlenecks of the AGU-MHV coder is a 

relatively high computational complexity of both partitioning an image into blocks and bit-

plane coding of transform coefficients[119]. 

ADCTC uses a cost function to considerably reduce a partition scheme (PS) 

optimization time. Besides, coding of numbers of significant bits (NOSB), context 

modeling, and coding of signs of DCT coefficients are utilized to improve the compression 

efficiency[109]. 

Figure 1.8– Modified horizontal-vertical partition scheme for ADCTC for image Barbara, 

bpp=1 

Fig.1.8 shows the PS obtained for the image Barbara, bpp=1. As can be seen, large 

size blocks for ADCTC correspond to either homogeneous image regions or fragments 

with a regular texture.  

In addition, some other excellent coders are proposed. In [120],an approximate 

multiplication-free of discrete cosine transform (DCT) for still image compression was 

presented. The introduction of null elements into a specified integer DCT leads to a new 

low complexity, faster, and more efficient transform. In[121], replacing the bit shift 

elements of a variant of the Signed DCT transform by zeros is involved, it eliminates the 

bit shift operations. A small amount of arithmetical computation is well developed as no 

multiplications and bit-shift operations are required, with only 16 additions involved. 

1.3.2 DWT-based coders 
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DCT uses image blocks to transform images and cannot eliminate the correlation 

between block edges. Therefore, some block effects affect visual appearance, especially at 

low bit rates. In recent decades, the wavelet transform has been developed to solve the 

blocking effect caused by discrete cosine transform with its inherent multi-scale analysis 

structure[94, 122]. The wavelet transform can compress most of the energy into the low-

frequency sub-band while separating its high and low-frequency information to reducing 

spatial redundancy. The definition of discrete wavelet transform[4, 74] is as follows: 

𝐷𝑊𝑚,𝑛 = 〈𝑓,𝛹𝑚,𝑛〉 = ∫ 𝑓(𝑡)𝛹𝑚,𝑛(𝑡)𝑑𝑡 = 𝑎0

−
𝑚

2 ∫ 𝑓(𝑡)𝛹
+∞

−∞
(𝑎0

−𝑚𝑡 − 𝑛𝑏0)𝑑𝑡
+∞

−∞
(1.9) 

where f(t) is the discrete signal, Ψ is the discrete wavelet basis function, it is expressed as: 

𝛹𝑚,𝑛(𝑡) =
1

√𝑎0
𝑚 𝛹 (

𝑡−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 ) = 𝑎0

−𝑚
2⁄ 𝛹(𝑎0

−𝑚𝑡 − 𝑛𝑏0) , 𝑎0 > 1, 𝑏0 ∈ 𝑅   (1.20) 

where R is the set of real numbers, let us give 𝑎 = 𝑎0
𝑚, 𝑏 = 𝑛𝑏0𝑎0

𝑚, then a is the scale 

factor, b is the shift factor of the basis function. 

Based on the wavelet transform, Mallat[123] proposed a tower multi-resolution 

decomposition and reconstruction algorithm for signals. Mallat's algorithm is a fast 

algorithm of the wavelet transform and can be extended to a two-dimensional case, thus to 

multi-scale analysis (multi-resolution). 

Two-dimensional DWT is implemented as follows: first, performs the one-

dimensional DWT row-wise to produce an intermediate result; second, performs the same 

one-dimensional DWT column-wise on this intermediate result to produce the final 

result[124]. The row-column computation diagram for two-dimensional DWT is shown in 

Figure 1.9. 

After the first level of decomposition, it generates four subbands, LL1, HL1, LH1, 

and HH1, as shown in Figure 1.9(a). The LL1 subband can be considered a 2:1 

subsampled (horizontally and vertically) version of the original image. The other three 

subbands, HL1, LH1, and HH1, contain higher frequency detail information. The LL1 

subband can be further decomposed into four subbands LL2, HL2, LH2, and HH2, as 

shown in Figure 1.9(b).The same computation can continue to further decompose LL3 into 

higher levels according to the principle of multi-scale analysis[124]. 
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a 

 
                                  b                                               c                                              d 

Figure 1.9–Row-Column computation of two-dimensional DWT, a) first level of 

decomposition, b) second level decomposition, c) third level decomposition, d) three-level 

wavelet decomposition coefficients of 8×8 image block  

Generally, DWT has two advantages for lossy compression. First, wavelet transform 

is a global transformation, and the "block effect" inherent in block orthogonal transform 

coding can be avoided in reconstructed images. Second, the wavelet transform adopts the 

data structure of tower decomposition. Consistent with the visual physiological 

characteristics of the human eye from coarse to fine, from the whole to the details, better 

visual quality can be obtained[4, 74]. 

At present, based on the two-dimensional discrete wavelet transform, excellent lossy 

image compression algorithms are developed, such as the EZW algorithm, SPIHT 

algorithm, and EBCOT algorithm, and some popular image coders are designed. 

JPEG2000: JPEG 2000 achieves higher CR for equivalent visual quality compared 

to the baseline JPEG, particularly at very low bit-rates. the image quality can also be 

adjusted depending on the degree of interest in each region of interest due to the adopted 

region of interest (ROI) coding[125, 126],which is a unique feature of the JPEG2000 

standard. ROI allows different regions of an image to be coded with different fidelity 

criteria. For lossy compression, the default wavelet filter used in the JPEG2000 standard is 

the Daubechies (9,7) biorthogonal spline filter. The quantized subbands are then divided 
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into a number of smaller code-blocks of equal size, except for the code-blocks at the 

boundary of each subband. 

The main drawback of the JPEG2000 standard compared to the current JPEG is that 

the coding algorithm is much more complex, and the computational needs are much higher. 

Moreover, bit-plane-wise computing may restrict good computational performance with a 

general-purpose computing platform[124]. 

SPIHT: Set partitioning in hierarchical trees (SPIHT)is a wavelet-based algorithm 

that offers good compression ratios, image quality, and fast execution time[127]. SPIHT 

coding involves the coding of the position of significant wavelet coefficients and the 

coding of the position of zero trees in the wavelet subbands. SPIHT introduces three lists 

of wavelet coefficients[128]: 

1)List of insignificant sets (LIS): contains the set of wavelet coefficients defined by 

tree structures, magnitudes<thresholds. 

2) List of insignificant pixels (LIP): contains the individual coefficients, 

magnitudes<thresholds. 

3) List of significant pixels (LSP): contains the pixels, magnitudes<thresholds. 

The significance function is defined as follows: 

𝑆𝑛(𝑡) = {
1    𝑚𝑎𝑥(𝑒,𝑓)∈𝑡𝑚{𝐶𝑒,𝑓} ≥ 2𝑛

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1.21) 

where Sn(t) represents the significance of the set of coordinates, t and Ce,f are the 

coefficient values of the (e,f). 

By sequentially encoding the records in the LIP, LIS, and LSP at different bit levels, 

the image can be approximated progressively. The DWT-SPIHT was proved to achieve 

good image quality with high PSNR, and is a very computationally simple algorithm and 

easy to implement in comparison with other coding methods[128]. 

 

1.3.3 Learning-based coders 
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With the development of deep learning techniques, the use of deep learning for lossy 

compression can be seen in recent research, greatly improving image compression 

performance. 

 In [129], a lossy hyper spectral image compression algorithm was proposed. It uses a 

combination of the convolution layer and max-pooling layer to reduce the dimensions of 

the input image then generate a compressed image. In [97], a novel standard-compliant 

convolutional neural network-based Multiple description coding (MDC) framework was 

proposed, efficiently leveraging the image context information to compress the image. In 

[130], an extended hybrid image compression scheme based on soft-to-hard quantification 

was proposed with only two layers. The base layer determines the performance of the 

rough reconstructed image. The enhancement layer is to further encode the residual image, 

thereby further improving the performance of the final reconstructed image. 

In addition, most end-to-end lossy image compression schemes based on deep 

learning methods[131-133] were proposed to solve the blocking, blurring, or ringing 

artifacts at low bit rates, which are common issues in existing compression coding. 

Generally, applying deep learning techniques to lossy compression can help improve 

compression performance and achieve better visual quality. However, the increase in 

computational complexity is inevitable. It is difficult to implement them in some 

applications, such as mobile embedded application platforms and platforms with limited 

computing resources such as remote sensing satellites. 

 

1.3.4 Other coders 

 

JPEG-XR: This standard originated from HD Photo technology developed by 

Microsoft Corporation, which was developed for digital imaging applications[134]. JPEG-

XR image compression algorithm consists of color space conversion, Lapped Bi-

orthogonal Transform (LBT) to transform the image from spatial domain to frequency 

domain, quantization, prediction, and adaptive entropy coding[135]. 
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BPG: Better Portable Graphics (BPG) is a novel compression algorithm, which is 

based on  High-Efficiency Video Coding (HEVC)[113]. Compared to the existing lossy 

compression coder, BPG has some distinct attributes: 

1) The open-source and royalty-free and patent-free nature; 

2) With advanced quality features, chroma formats supported include grayscale, RGB, 

YCgCo, YCbCr, Non-premultiplied alpha, and Premultiplied alpha. 

3) BPG is capable of cross-platform use through its JavaScript interpreter. 

It can be seen that BPG is a light lossy compression coder, meeting modern display 

requirements (high quality and smaller size). These characteristics make it suitable for 

embedded systems or real-time systems, and thin-client browsers. Based on the same bit-

per-pixel (BPP), BPG can provide visual quality comparable to compression algorithms 

based on convolutional neural networks and performs significantly better than the 

traditional algorithms such as JPEG2000[130, 136, 137], particular in human evaluation 

according to the MS-SSIM scores. 

Quantization parameter Q is the main parameter to control the compression in BPG, 

where 𝑄 ∈ {1,… , 51}. Smaller Q results in less quantization and better quality, vice 

versa[138]. 

From the analysis in this section, it can be concluded that generally speaking, DWT-

based lossy coding can achieve better coding efficiency than DCT-based coding, but it 

also increases computational complexity. In the current technology, AGU series encoders 

based on DCT encoding can provide visual quality comparable to DWT encoders through 

some simple optimizations; DWT-based SPIHT, through the significant list of wavelet 

coefficients, reduces the computational complexity and accelerate coding speed; Among 

emerging coding technologies, BPG coding can provide visual quality comparable to 

coding based on deep learning technology, while its portability allows it to be applied to a 

wider range of applications. 

Anyway, it can be considered that the visual quality of the decompressed image 

(error or distortion degree) is an indicator for choosing a lossy compression algorithm in 

an application. Thus, it is worth paying special attention to SPIHT, AGU, and BPG 

encoders. 
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1.4 Requirements for lossy compression techniques 

 

Lossy compression achieves high CR by discarding some high-frequency components, 

resulting in distortion and degradation of decompressed image quality. Severe distortions 

or bad image quality affect the visual perception of human being and cause a negative 

influence on further image processing and/or analysis.  

 

1.4.1 The requirements of human visual perception 

 

In many applications, the decompressed images are used for viewing by users, and the 

quality of the images affects the user's visual perception. Lossy compression discards 

high-frequency information, and the human visual system is not very sensitive to slight 

distortions of this information. Then if a higher CR needs to be  achieved, more 

information needs to be discarded, and more distortions have to be introduced, which can 

be noticed when the visual quality drops to a certain value. A lossy compression example 

of image Lenna is shown in Fig 1.10. 

Compared to the original image, the image in Fig.1.10(b) has the appropriate quality 

with the considerable CR (20,5), which is much larger than for lossless compression. It 

proves that discarding certain high-frequency information can effectively improve the 

compression efficiency and has a limited impact on the image visual quality. It is also the 

advantage of lossy compression and the reason that it is widely used. 

a. original image b.CR=20.5, PSNR=36.4dB c.CR=128.8, PSNR=28.7dB 
Figure 1.10 - Lenna image and its decompressed images 
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However, when CR continues to increase, the image quality further decreases 

(Fig.1.10.c), then the difference between the original image and the decompressed image 

is easy to notice. This means the distortions have exceeded a certain threshold the image 

quality can be not acceptable fora user. 

In lossy compression, in addition to CR, image quality is another important metric. 

Performing an image quality assessment (IQA) for the decompressed image is necessary. 

One reason is that under the same CR, the compression efficiency of different lossy 

compression algorithms can be compared through IQA. Another reason is that it is 

required to control distortions in many applications, and image quality is a priority in some 

cases. 

For a fixed lossy compression coder, higher CR is in the cost of introduction of 

distortion, which means that the decrease of quality accompanies the increase of CR. 

However, the bad image quality can lead to poor visual perception by human beings or 

errors in further image processing and analysis. An example is shown in Fig.1.10.c, where 

the distortion can be easily noticed, then this compression is not satisfactory. Therefore, it 

is essential to control the distortion in a reasonable range[30], and it is desired to provide a 

visual quality particular value with an acceptable error[51, 139]. 

 

1.4.2 The requirements to image processing algorithm 

 

Image compression is not a final operation, and it has to be treated as a method used 

to save storage space and improve transmission efficiency. The compressed image needs 

to be decompressed before further image processing or analysis, and the quality of the 

decompressed image directly affects accuracy of subsequent image processing or analysis. 

Classification is a common image analysis task, which is demanded widely in remote 

sensing, IoT, and other digital image fields. In these applications, the data acquisition 

device often has limited resources. Images need to be transmitted to a base or processing 

center with restricted bandwidth for further processing or analysis. Thus, it is necessary to 

use lossy compression to reduce the size of the image. However, the classification 

accuracy is in correlation with image quality. Distortions introduced by lossy compression 
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can lead to degradation of image quality, which can impact on the accuracy of 

classification. 

Some researchers have made efforts to study the impact of lossy compression on the 

classification accuracy of remote sensing images. In [125], a study was carried out on the 

implications of JPEG (JPG) and JPEG 2000 (J2K) lossy compression for image 

classification of forests in Mediterranean areas. The result proved that even at high 

compression levels, the resulting visual effects do not necessarily severely impact on the 

classification results. However, if the optimal compression level is exceeded, the 

classification accuracy can be adversely affected. Depending on the image fragments, the 

inflection points are located at different CRs. In [140], the study demonstrates that the 

effects were almost linear when the CR was less than 35 on their data set. However, once 

the CR was over 35, the image quality would significantly decrease, leading to a sharp 

drop in classification accuracy. An interesting finding in [141]shows that in some cases, a 

higher compression ratio may yield better overall classification accuracy due to the local 

spatial-spectral smoothing effect introduced by specific compression schemes. 

Unlike the previous studies that focus on qualitative research on the impact of lossy 

compression on the accuracy of classification algorithms, other researchers focus on 

quantitative analysis of these effects. In [142], a quantitative study has analyzed the effects 

of compression on remote sensing image classification and proposed a method to estimate 

the remote sensing image classification accuracy based on fractal analysis. It investigated 

the effects of compression ratio on classification accuracy of both overall and particular 

classified types. Their results demonstrate that the extent of the effects depends on both 

the compression levels and the image contents. For quantitative research, metrics such as 

PSNR, SSIM and MS-SSIM, and VIQ were used to evaluate the quality of images after 

compression, and the correlation between these metrics and overall classification accuracy 

and particular class classification accuracy was analyzed by SROCC value, among them, 

MS-SSIM correlation is higher than other full parameters. 

In [125],the final task is to recognize and  classify shapes in a processed 2D image. 

These images are acquired in distributed, low-power IoT sensors then offloaded on a 

remote server where more computational power is available. Hence, lossy compression is 
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essential to save bandwidth and power during transmission. The results show that the 

Convolutional Neural Networks (CNNs)classification performance was correlated with the 

quality of the images in terms of the Structural SIMilarity (SSIM) metric. Moreover, each 

image can be associated with an SSIM threshold below its classification rank drops. 

However, no clear correlation or threshold was found in the experiments according to Peak 

Signal to Noise Ratio (PSNR) metric. 

It can be seen from the above analysis that the image quality in lossy compression 

needs to be constrained not only in applications based on human perception but also in 

other image processing or analysis tasks. Moreover, selecting evaluation indicators for 

image quality is also very important, and the correlation between different metrics and task 

execution accuracy is different. The current popular visual quality evaluation metrics will 

be reviewed in the next section. 

 

1.4.3 Image quality metrics 

 

From the above analysis, it can be concluded that if it is desired to compare the 

performance of different compression coding algorithms or to control the distortions in 

lossy compression, it is necessary to evaluate the quality of the decompressed image. 

Currently, the research on image quality of lossy compression has become an important 

branch. Image quality assessment (IQA) methods can be categorized into subjective and 

objective. 

Subjective assessment is the most reliable way to evaluate the quality of images since 

humans are the main consumers of images[143]. The mean opinion scores (MOS) are 

collected in the subjective tests, where many observers are required for assessing the 

visual quality of a huge number of distorted images in image databases, e.g., LIVE image 

quality assessment database[144], Tampere image database 2013 (TID2013)[145], MICT 

image quality evaluation database [146]. Finally, the MOS of image quality can be 

determined. However, subjective image quality assessment is a costly process that requires 

many observers and takes a lot of time. Therefore, it cannot be used in automatic 
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evaluation programs or in real-time applications[147]. A typical example is RS image 

lossy compression, which is expected to be performed quickly. 

Contrary to subjective evaluation, Objective quality assessment methods, usually 

designed to automatically predict the visual quality, are implemented by training using the 

supervisor evaluation database. Numerous metrics have been designed and proposed to 

evaluate image quality in recent years. According to the reference to the original image, 

these metrics can be divided into three categories, full-reference (FR), reduced-reference 

(RR), and no-reference (NR) assessment. This is according to the availability of the 

distortion-free reference image.FR-IQA requires an image as the original reference, while 

RR methods require access to certain features that have been extracted from the reference 

image. On the other hand, NR methods evaluate the quality of the distorted image in the 

absence of the reference image[148].Since the reference images are available at the 

encoder side, the FR-IQA metrics are applicable to evaluate the distortions introduced by 

lossy compression. Therefore, this section follows with a brief review of popular FR visual 

quality metrics. 

1) Conventional error pixel-based metrics 

The most classical metrics are mean square error (MSE) and peak signal-to-noise 

ratio (PSNR), both focusing on pixel-level signal fidelity. These measures are calculated 

according to the equations (1.22) and (1.23). Here R denotes the reference (original) image, 

T denotes the test (distorted) image. 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝑅(𝑖, 𝑗) − 𝑇(𝑖, 𝑗)]2𝑁−1

𝑗=0
𝑀−1
𝑖=0 (1.22)

where i and j are pixel indices, and M, N are the height and width of an image. PSNR is 

calculated for the test image and reference images as  

        𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20𝑙𝑜𝑔10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (1.23) 

where MAXI denotes the maximum possible pixel value of the image. If it is an 8-bit 

unsigned integer data type, then MAXl equals 255. PSNR indicates the ratio between the 

maximum possible signal power and the power of the distorting noise, which affects the 

image quality. It is expressed in dB, and a larger value relates to fewer distortions.  
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Image quality assessment metrics such as MSE and PSNR do not consider the human 

visual perception features, and then the assessment result is often inconsistent with the 

human subjective perception. Nevertheless, they are still the most widely used objective 

metric since they are simple for mathematical calculation and are clear in the physical 

meaning. While many new objective metrics have been proposed, PSNR is usually treated 

as one basic reference metric to be analyzed. 

2) HVS-inspired metrics 

In order to give the evaluation, which is more consistent with the quality evaluation 

results of the human visual system on the image, some researchers combined the 

characteristics of HVS with pure mathematical algorithms. The following metrics are the 

typical HVS-inspired metrics. 

VSNR: visual signal-to-noise ratio (VSNR)[149], operates based on physical 

luminance and visual angle, wavelet-based models of visual masking and visual 

summation are utilized for distortion analysis. 

PSNR-HVS:HVS-based peak SNR (PSNR-HVS)[150] combines PSNR with HVS 

characteristics by considering the contrast sensitivity function (CSF).  

PSNR-HVS-M: a modified version based on the PSNR-HVS, it is defined in a similar 

way to the PSNRHVS, but the difference between the DCT coefficients is further 

multiplied by a contrast masking metric (CM) for every 8x8 block (Fig. 1.11). Here MSEH 

is the MSE taking into account CSF, each DCT coefficient of an image block in some 

degree masks any other block coefficients, except DC coefficient with the index 0,0 that 

corresponds to the block mean luminance. The basis of the model calculation is masking 

the degree of each coefficient depending upon its square value (power) and human eye 

sensitivity to this DCT basis function determined by means of CSF[38]. 

 

Figure 1.11 – Flow-chart of PSNR-HVS-M calculation for each 8×8 pixel block 
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Both PSNR-HVS and PSNR-HVS-M take into account the effect of different 

sensitivity of HVS to distortions in different spatial frequencies[32]. The considered 

metrics are calculated as 

𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 = 10𝑙𝑜𝑔10(2552/𝑀𝑆𝐸𝐻𝑉𝑆)                                   (1.24) 

𝑃𝑆𝑁𝑅 − 𝐻𝑉𝑆 − 𝑀 = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸𝐻𝑉𝑆−𝑀
) (1.25) 

where MSEHVS and MSEHVS-M are mean square errors (MSEs) weighted in DCT domain 

with specific weights. 

PSNR-HMA: In order to improve the performance of PNSR-HVS-M on the Exotic 

and Exotic2 subsets of TID2008, the PSNR-HMA metric was proposed, considering a 

psycho-visual feature that image stretching and mean changing (in some limits) do not 

considerably influence human perception of images[32]. 

 3)Structural comparison-based metric 

UQI: universal image quality index(UQI)[151]is designed by modeling any image 

distortion as a combination of three factors: loss of correlation, luminance distortion, and 

contrast distortion. 

SSIM: structural similarity (SSIM)[152]is a modified version of the UQI. It operates 

in the spatial domain and performs three types of comparisons between the reference and 

distorted images: luminance comparison, contract comparison, and structure comparison. 

The three components are combined according to the combination function f(∙) as shown 

in equation (1.26). Here x is the original image having perfect quality, y is the 

reconstructed image for lossy compression 

𝑆(𝑥, 𝑦) = 𝑓(𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), 𝑠(𝑥, 𝑦)) (1.26) 

Three functions, l(x,y), c(x,y), s(x,y), Respectively represent luminance comparison, 

contrast comparison, and structure comparison. The three components are relatively 

independent. 

MS-SSIM: a multi-scale version of SSIM (MS-SSIM)[153] uses five scales instead of 

the single-scale approach in SSIM. The contrast and structural comparisons are performed 

at all scales, while the luminance comparison takes place only at the final scale.  
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CW-SSIM: complex wavelets-SSIM (CW-SSIM)[154]is simultaneously insensitive 

to luminance change, contrast change, and spatial translation. The key idea is to make use 

of the fact that these image distortions lead to the consistent magnitude and/or phase 

changes of local wavelet coefficients. 

4) Multi-strategy combined metrics 

Some other metrics have two or more separate strategies, different from the metrics 

above, which adopt a single most relevant strategy used by HVS to assess image fidelity. 

FSIM: feature SIMilarity (FSIM)[155] uses phase congruency (PC) and gradient 

magnitude(GM) as the primary and secondary features. PC and GM play complementary 

roles in characterizing the local image quality. It is proposed based on the fact that the 

human visual system (HVS) understands an image mainly according to its low-level 

features, such as edges and zero-crossings. The computation consists of two stages: first, 

the local similarity map is computed; then, the similarity map is pooled into a single 

similarity score. 

𝑆𝐿(𝑥) = 𝑆𝑃𝐶(𝑥) ∙ 𝑆𝐺(𝑥) (1.27) 

Then SPC(x) and SG(x) are combined to get the similarity SL(x) at each location x. 

However, different locations have different contributions to HVS perception of the image. 

The human visual cortex is sensitive to phase congruent structures, for example, edge 

locations. The PC value at a location can reflect how likely it is a perceptibly significant 

structure point. Then the max PC value PCm(x) between the original image and distorted 

image at location x is utilized to weigh the importance of SL(x) 

𝐹𝑆𝐼𝑀 =
∑ 𝑆𝐿(𝑥) ∙ 𝑃𝐶𝑚(𝑥)𝑥∈Ω

∑ 𝑃𝐶𝑚𝑥∈Ω (𝑥)
(1.28) 

where Ω means the whole image spatial domain. The FSIM index is designed for 

grayscale images or the luminance components of color images. It can be extended to the 

color version called FSIMC[155] by incorporating the chromatic information in a 

straightforward manner: 

𝐹𝑆𝐼𝑀𝑐 =
∑ 𝑆𝐿(𝑥) ∙ [𝑆𝑐(𝑥)]𝜆𝑃𝐶𝑚(𝑥)𝑥∈Ω

∑ 𝑃𝐶𝑚𝑥∈Ω (𝑥)
(1.29) 
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where Sc(x) is chrominance similarity measure combined by I and Q components in YIQ 

color space, and𝜆>0 is the parameter used to adjust the importance of the chromatic 

components. 

VSI:A visual saliency-induced index (VSI)[156] is a simple but very effective full 

reference IQA method using visual saliency(VS).First, VS is used as a feature when 

computing the local quality map of the distorted image. Second, when pooling the quality 

score, VS is employed as a weighting function to reflect the importance of a local region. 

DSS: DCT subbands similarity (DSS)[157]exploits essential characteristics of human 

visual perception by measuring change in structural information in subbands in the 

discrete cosine transform (DCT) domain and weighting the quality estimates for these 

subbands. 

MDSI: mean deviation similarity index (MDSI)[158] is calculated by combined 

gradient similarity (GS), chromaticity similarity (CS), and deviation pooling 

(DP).Gradient magnitude is used to measure structural distortions, and chrominance 

features are used to measure color distortions, then the similarity maps are combined to 

build a gradient-chromaticity similarity map. Finally, the deviation pooling is used to 

compute the global variations, which is followed by power pooling. 

  According to MDSI, an image with perfect quality is assessed by a quality score of 

zero since there is no variation in its similarity map. Experiments prove that MDSI shows 

a very good compromise between prediction accuracy and model complexity. 

 5) Learning-based method 

Benefitting from the development of neural networks, some researchers have 

proposed learning-based objective IQA metrics recently[159-161]. Generally, this method 

establishes a human visual system model by large-scale experiment data. Let us recall that 

the subjective IQA is based on a certain subjective standard and manual quality evaluation, 

which represents the natural human perception but at the expense of a considerable time. 

On the contrary, the objective IQA can evaluate the image quality quickly by the 

mathematic model to simulate the human visual perception. However, this fitting is often 

not perfect, so modification is required according to application conditions. 



 

 

50 
 

Learning-based objective IQA metrics can fit the HVS better than traditional 

objective IQA metrics. They can train the model in terms of application and the 

corresponding data but not calculate in a fixed equation. After the model is trained, it can 

automatically generate the value, and this processing is usually more efficient than the 

subjective IQA. This image quality evaluating method has been used in hyper spectral 

remote sensing images[159], and ground-based optical images of satellites[160]. The 

learning-based objective IQA shows its potential but not the main research direction in 

lossy compression since high computation efficiency is often required. 

Through the review in this section, it can be concluded that visual quality is very 

important for the comprehensive evaluation and practical application of lossy compression, 

and the use of reliable objective visual quality indicators can sufficiently help algorithms 

to evaluate the visual quality of decompressed image, thereby to perform lossy 

compression with the quality that meets user requirements, at least no negative impact on 

human perception or further image processing and analysis. There are two factors that 

need to be considered in the selection of IQA metrics in this topic: the first is reliability, 

the consistency between the predicted visual quality and the visual quality of the distorted 

image will be compared in detail in the next chapter; the second is the calculation 

complexity, overly complex calculations will reduce the time efficiency of compression. 

Therefore, learning-based metrics are not further considered. 

 

1.5 Analysis of methods of image quality controlling in lossy compression 

 

Currently, the research on image quality in lossy compression focuses on two aspects. 

One is to provide better image quality in compression coding; the second is to study the 

metrics for evaluating image distortions and improve their consistency with the human 

visual system. However, few studies focus on the control of decompressed image 

distortions in lossy compression. 

The distortion control does not mean providing a high compression ratio is not 

required. However, high compression ratios inevitably lead to more information being 

discarded, thereby reducing the quality of the decompressed image. In order to balance 
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both, Some trade-off should be found between a compressed image quality and a produced 

CR [162]. Besides, in lossy image compression, image quality has to be described using 

some adequate (application or service-oriented) quality metrics [32, 38, 150, 155, 158, 

163]. The trade-off of lossy compression can be reached if:  

a) an adequate metric is available;  

b) a tool (algorithm) for quality variation is available;  

c) a method for providing the desired quality with appropriate accuracy is available, 

and it is able to work quickly enough.  

In other words, one has to provide high computational efficiency, high reliability, and 

accuracy of an approach to providing the desired quality of compressed images[44].It is 

not an easy task because it depends on many factors, such as lossy compression coder 

adopted, image to be compressed, quality metric employed. Fortunately, the method of 

controlling the distortion in lossy compression also attracts a part of research interest. 

Some researchers have done some preliminary related research and achieved some results.  

 

1.5.1 Visually lossless lossy compression 

 

Visually lossless is a simple tradeoff based on visual perception. These methods lie in 

between lossy and lossless compression: they introduce compression distortions but ensure 

that those distortions are unlikely to be visible. 

In [164], visually lossless compression was first introduced to compress medical 

images, where the vision model was embedded into the SPIHT coder. Visually lossless 

coding refers to the compression of images without evoking any perceptible degradation in 

image quality through the suppression of visible distortions. The implementation of the 

code consists of three stages, a forward wavelet transform, vision modeling, and SPIHT 

encoding. 

Another visual lossless compression method was applied in remote sensing images 

within the framework of JPEG 2000 in  [165], where the quantization step size needed for 

visually lossless display was a resolution function. This visually lossless compression was 
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achieved by applying multiple visibility thresholds corresponding to various display 

resolutions in each subband. 

Recently, a CNN-based method was proposed to train an accurate visibility metric for 

visually lossless image compression[166]. The visually lossless threshold (VLT) was 

utilized to set the CCP that produces the smallest image file while ensuring visually 

lossless quality. 

 

1.5.2 JND point 

 

In addition to the visual lossless threshold, the researchers found that humans have 

other perception points for the visual quality of images. The visual Just-Noticeable-

Difference (JND) metric is characterized by the detectable minimum amount of two visual 

stimuli. The JND metric can be used to save coding bitrates by exploiting the special 

characteristics of the human visual system[167]. 

In [167], a new angle based on JND was utilized to evaluate the JPEG coded image 

quality. The results show that the human perceived quality of coded images can be 

characterized by a piecewise constant function of the QF(the main CCP in JPEG) with 

discontinuities at JND locations. However, these locations are content-dependent and 

statistically distributed. 

The fine-grained distortion levels were given for perceptual-based image 

compression in [168].A reliable subjective experiment with pair-wise comparison was 

utilized to rank the qualities of these distorted images.  

However, among these JND points, the first one is the most significant, seen as the 

boundary between lossy and visually lossless compression. In [169], a high level of 

correlation was found existing between a simple image feature – mean gradient magnitude 

and the peak signal-to-noise ratio (PSNR) of the first just noticeable difference point for 

JPEG image compression. A method was proposed to estimate the JPEG quality factor, 

which represents the effective limit between perceptually lossy and lossless coding as the 

PSNR of the first just noticeable difference point. The subjective trial results are presented 

through stair-like quality functions (SQF) obtained through analysis and post-processing 
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of raw JND data. They show that human observers differentiate between 4 and 8 quality 

levels. 

The JND-based method can be well based on the minor difference the human visual 

system can perceive to obtain a suitable compression ratio. But this approach relies on 

subjective experimentation, and there are certain difficulties in embedding it into a lossy 

compression algorithm because it also relies on image content. 

 

1.5.3 Iterative method 

 

Visually lossless compression and JND-based compression aim to provide a special 

image quality in lossy compression, around a certain visual threshold. However, the 

requirements of visual quality in applications are individual. Obviously, none of the above 

methods can provide arbitrary visual quality values for lossy compression. Some 

researchers have used iterative methods in lossy compression to achieve perfect precision 

visual quality. 

First, the iterative method was used to achieve better accuracy for decompressed 

image quality. A novel scheme for lossy compression of an encrypted image with a 

flexible compression ratio was proposed in [84]. The better quality was achieved while 

reconstructing the principal content of the original image by iteratively updating the values 

of coefficients. 

In [81], iterative image compression procedures are proposed to provide a desired 

visual quality with high accuracy. The PCC values attained at the end of the iterative 

procedure may heavily depend upon the coder used and the complexity of the image. 

However, the reasonable selection of the starting value and the variation interval for CCP 

help reducing the number of iterations. 

In [139], a quality-controlled reconstruction of ECG signal by the formulation of 2D 

Discrete Cosine Transform (DCT) coefficient and iterative JPEG2000 encoding scheme 

was presented for Electrocardiogram (ECG) data compression. Iterative JPEG2000 

encoding is utilized for achieving the overall predefined reconstruction error. 
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This method can get better quality accuracy in lossy compression by presuming 

multiple compression/decompression, but the number of iterations is uncertain, and 

sometimes it is very large, which reduces the time efficiency of compression. 

 

1.5.4 Prediction method 

 

Predicting the image quality before using a compression algorithm is an approach 

with better time efficiency than iterative one. 

In [170], a classification-based image compression approach has been proposed, 

where images are assigned to one of two classes before their compression by a JPEG 

algorithm considering their quality after compression. This method allows predicting and 

automatically selecting the proper value of QF for each image before compressing, thereby 

saving storage space while maintaining sufficiently high image quality. Several features 

are selected to describe the image, and a majority of the features are extracted from images 

processed by Prewitt edge detection filter. Suppose the SSIM>0.91 and PSNR>33 dB, the 

quality of the decompressed image is considered to be satisfactory (high quality). 

Otherwise, it is classified as low quality. 

In [171], a fast and rather accurate approach to the prediction of mean square error 

(MSE) or peak signal-to-noise ratio (PSNR)was developed for the ADCT coder. It 

analyzes statistics of DCT coefficients in a limited number of blocks of size 8x8 pixels. 

This prediction method is fast but has a limited accuracy. 

Although the extraction of image features in the prediction method can estimate the 

quality of the decompressed image and avoid the operation of multiple 

compression/decompression, the prediction accuracy is limited. It is difficult to determine 

the CCP in lossy compression by purely predictive methods to provide desired visual 

quality.  

1.6 Conclusions and formulation of research objectives 

 

This chapter firstly introduces digital image technology, clarifies the role and 

application scope of image compression in digital image technology, and its relationship 
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with other image processing and analysis technologies. In the second section, a brief 

introduction to lossy compression technology and lossless compression, the basic 

implementation scheme and algorithm characteristics of the technology are given; it is 

shown that lossy compression has been widely used in digital image technology due to its 

superior compression ratio. In Section 1.3, an overview of currently existing lossy 

compression encoders is given. Certainly, the introduction of distortions also makes it 

necessary to evaluate the decompressed image quality in lossy compression. Subjective 

evaluation involves a lot of manual labor, which cannot be achieved in automatic 

calculation. In contrast, the proposal of an objective evaluation metric enables the image 

quality to be quickly calculated, which can be directly fed back to the lossy compression 

process. Therefore, the fourth section of this chapter reviews the commonly used full-

parameter image quality evaluation indicators. 

From the previous literature review in the fourth section, it can be seen that how 

much loss can be allowed is application-dependent. If the terminal is a human, the 

distortion is often required to be undetectable, that is, visually lossless. Further, it is 

required to provide image quality corresponding to different levels of visual perception. If 

the image requires further processing or analysis rather than direct viewing, the 

requirement for decompressed image quality will then be individualized, as it depends on 

the impact of image quality on the task, and it is desirable not to negatively affect the 

performance or accuracy of the task. Moreover, selecting the image quality metric is also 

important since the correlation between the values calculated by different metrics and the 

accuracy of the final task is not the same[172]. 

In order to obtain compression that is safer for the user, i.e., without loss of visual 

perception or adverse effects on subsequent image processing or analysis, the controlling 

of images distortions introduced by lossy compression is demanded in many applications. 

Then, in the fifth section, a review is given to analyze the methods of image quality 

controlling in lossy compression. Visual lossless and JND-based visual quality provides 

distortion control for the perceptual threshold of human vision. In short, as long as the 

visual quality is guaranteed to be higher than a particular value, there is no clear 

requirement for the precision control of the provided visual quality. However, in some 
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image processing or analysis algorithms, the requirements for image quality are more 

specific. At this time, it is necessary to provide the expected visual quality in lossy 

compression for these tasks and meet certain accuracy requirements. The prediction 

method can extract information and features through a certain number of blocks of original 

images to establish a particular model to predict the quality of the decompressed image. It 

can also be used to set appropriate parameters for providing the desired visual quality. 

However, the accuracy of this prediction method is not satisfactory at present. It is mainly 

used for rough classification. If it is directly applied to provide the desired visual quality 

for lossy compression, its accuracy needs to be improved. The iterative method can 

achieve ideal control accuracy at the cost of multiple compression/decompression. This 

number depends on the image content and the compression encoder and sometimes can be 

huge. This disadvantage limits its use in platforms with high real-time requirements or 

limited computing resources. 

In view of the fact that none of the current methods can satisfactorily provide the 

desired visual quality in lossy compression, it is urgent to design an effective visual 

quality providing method; thus, the main objectives of the study are: 

➢ Develop an effective method of predicting the visual quality of decompressed 

images for a given parameter, which will work with a broader range of lossy compressions, 

such as DCT-based and DWT-based coders. 

➢ Develop a method of providing the desired visual quality in lossy compression, 

which will have low computational complexity, and adequate control accuracy. 

➢ Develop an intelligent method of the auto setting parameter according to the 

desired visual quality, which will allow enhancing the primary method’s robustness by 

referring to some of the image characteristics. 

➢ Develop a set of practical recommendations on the remote sensing images lossy 

compression, based on the influence of distortion on the classification accuracy. 
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CHAPTER2 

RESEARCH AND DEVELOPMENT OF PRIMARY METHOD OF PROVIDING THE 

DESIRED VISUAL QUALITY IN LOSSY COMPRESSION 

 

This section studies and analyzes existing image quality metrics, and the degree of 

consistency of quality measures with subjective assessments of the created databases of 

test images is assessed. The performances of the existing popular lossy compression coder 

are also compared and analyzed, according to decompressed image visual quality under 

the same CR. Further, the method of predicting the visual quality in lossy compression is 

improved for a given parameter. In addition, the primary two-step compression method of 

providing the desired visual quality is developed for grayscale images, where the HVS-

based metrics are employed to evaluate the decompressed image quality.  

 

2.1 Selection of appropriate visual quality metrics 

 

In order to provide the desired visual quality in lossy compression, the decompressed 

image quality needs to be evaluated using appropriate visual evaluation metrics. 

Consequently, the first task in our study is selecting of visual quality metric to be 

employed. 

The literature review in chapter 1 shows that the objective FR metric is preferred to 

lossy compression, and many evaluation metrics have already been proposed.  These 

objective evaluation metrics aim to predict the visual quality of images through various 

computational models and are continuously optimized to reflect the fidelity of images 

better and maintain higher consistency with the evaluation results of the human visual 

system. 

A commonly used method is to calculate the correlation between the value given by 

the objective evaluation metrics and subjective mean opinion scores (MOS) on a large 

dataset. The Spearman rank-order correlation coefficient (SROCC) is a commonly used 

measure of the method’s prediction monotonicity[143].There are other rank-order-based 
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measures, such as Kendall’s rank-order correlation coefficient (KROCC), which are found 

to be highly consistent with the SROCC measure.  

To figure out the appropriate metrics, we have tested test 48 existing popular FR 

metrics, and some of them have been discussed in chapter 1. The SROCC value of a 

metric on a database with N images is calculated as: 

𝑆𝑅𝑂𝐶𝐶(𝑂, 𝑆) = 1 − [
6∑ 𝑑𝑖

2𝑁
𝑖=1

𝑁(𝑁2 − 1)
] (2.1) 

where di denotes the difference between the i-th image’s ranks in the objective (O) and 

subjective (S) scores.  

The testing was done on the image database TID2013[145], which contains 3000 test 

images obtained from 25 reference images, 24 types of distortions for each reference 

image, and 5 levels for each type of distortion. Each image is associated with a MOS in 

the range from 0 to 9. Three types of distortions are considered in our testing. They are 

introduced by lossy compression with the JPEG coder, with the JPEG2000 coder, and by 

compression of noisy images by the AGU or ADCT coders. These three distortions 

represent the types of distortions typically introduced by lossy compression. The results 

are shown in Table 2.1. 

Table 2.1–The results of 48 FR metrics on TID2013 database in terms of SROCC  

FR metric SROCC FR metric SROCC FR metric SROCC 

PSNR 0,9143 PSNRHMA 0,9667 ADD_SSIM 0,9561 

MSE -0,9143 FSIM 0,9606 MCSD -0,9690 

WSNR 0,9399 FSIMc 0,9616 MDSI -0,9663 

UQI 0,8245 IWSSIM 0,9405 UNIQUE 0,9025 

SSIM 0,8933 ADM 0,9319 MSUNIQUE 0,9061 

MSSIM 0,9345 GSM 0,9588 PSIM 0,9699 

IFC 0,8747 IGM 0,9638 CVSSI -0,9702 

VIF 0,9477 SRSIM 0,9675 PSNRHMA_mod 0,9667 

VIFP 0,9257 SFF 0,9553 DSI -0,9297 

MSVD -0,4059 GMSD -0,9706 CSSIM 0,9560 

QILV 0,9019 ESSIM 0,9592 CSSIM4 0,9342 

VSNR 0,9146 WASH 0,3886 SSIM4 0,9497 

PSNRHVS 0,9645 VSI 0,9699 HaarPSI 0,9683 

PSNRHVSM 0,9606 IQM2 0,9592 RVSIM 0,9480 

CWSSIM 0,8624 DSS 0,9529 NQM 0,9042 

PSNRHA 0,9658 ADD_GSIM 0,9962 RFSIM 0,9433 
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Larger absolute SROCC values indicate a closer relation with the human subjective 

evaluation. From Table 2.1, it can be seen that some metrics have a very high correlation 

coefficient in terms of SROCC, such as PSNR-HVS, PSNR-HVS-M, PSNR-HMA, FSIM, 

FSIMc, MDSI, etc. They have scores higher than 0.96, which means these metrics can 

describe the quality of decompressed images very well. Besides, the analysis also shows 

that the HVS-based metrics and the multi-strategy metrics have about the same 

performance.  

In view of the experiment results, we have a motivation to employ the following 

metrics to evaluate the decompressed image quality in this study: 

1) PNSR-HVS; 

2) PSNR-HVS-M; 

3) PSNR-HMA; 

4) FSIM; 

5) FSIMc; 

6) MDSI. 

In addition, the classic metric PSNR is also employed in some cases to be a reference 

for comparison. 

 

2.2 Comparison of various lossy compression coders 

 

Concerning the selection of the lossy compression coders, we have discussed it in 

chapter 1, section 1.4. Based on the result of the literature review, conclusions can be 

drawn that:  

1) The DCT-based AGU series coders can provide a better compression ratio than 

JPEG by changing the partition method and reduce the blocking effect. 

2) Compared with JPEG2000, the DWT-based SPIHT coder reduces the 

computational complexity. 

3) The emerging BPG coder can provide visual quality comparable to the coder based 

on deep learning technology with a light algorithm. 
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Given the importance of visual quality evaluation in lossy compression encoder 

selection, we conduct some image-compression comparison experiments. Considering the 

decompressed image visual quality relates to the image content, particularly the 

complexity, three images are chosen as the typical example (shown in Fig.2.1). 

a 
 

b c 

Figure 2.1 – Three typical images: a) Baboon, b) Barbara, c) Peppers 

Among the three ones, the image Baboon has the highest complexity due to its high 

image texture. The image Barbara is moderately complex since it has highly textured 

regions as well as homogeneous areas. The image Peppers represents simple images for its 

large homogeneous areas and simple image structure. We conducted lossy compression on 

these images with the AGU, BPG, and JPEG coders, respectively. According to the 

analysis in section1, we have chosen three visual quality metrics, PSNR, PSNR-HVS-M, 

and FSIM to evaluate the decompressed images. 

Table 2.2– Comparison of compression results of different coders 

CR Image 

AGU BPG JPEG 

PSNR 

PSNR-

HVS-

M 

FSIM PSNR 

PSNR-

HVS-

M 

FSIM PSNR 

PSNR-

HVS-

M 

FSIM 

5 

Baboon 33,305 39,010 0,990 34,245 41,020 0,992 29,140 47,609 0,994 

Barbara 42,848 49,340 0,998 43,618 51,560 0,998 37,920 53,465 0,998 

Peppers 41,416 47,027 0,997 42,850 49,774 0,998 37,710 56,523 0,998 

10 

Baboon 28,380 31,163 0,969 29,007 32,814 0,9734 25,403 34,616 0,974 

Barbara 37,710 40,964 0,992 38,688 42,919 0,9937 31,947 41,264 0,989 

Peppers 37,307 41,232 0,992 38,743 43,772 0,995 35,468 44,852 0,995 

20 

Baboon 25,233 26,058 0,936 25,322 26,813 0,937 22,824 24,700 0,918 

Barbara 33,318 34,132 0,977 34,162 35,665 0,981 26,900 30,941 0,954 

Peppers 34,828 37,105 0,985 36,081 39,453 0,989 32,957 35,825 0,979 

 

The comparison of compression results corresponding to CR equal to 5, 10, and 20, 

respectively, is shown in Table 2.2.A general trend is that visual quality degrades as CR 

increases, regardless of the compression technique used and the complexity of the image 
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being compressed. It can be seen from Table that when the CR=5, the results obtained by 

the PSNR metric based on pixel error have a large deviation from the quality prediction 

results of the HVS-based PSNR-HVS-M metric and the multi-strategy-based FSIM metric. 

When the CR=10, this deviation becomes smaller, and when the CR=20, the results of the 

three are basically consistent. However, in any case, the results of PSNR-HVS-M and 

FSIM are consistent. Let us give an example of the image Baboon. 

Figure 2.2 –Decompressed image Baboon, a) CR=10, BPG, b) CR=5, JPEG 

Compared to the original image (shown in Fig 2.1.a), Fig 2.2.a introduces more 

distortion than Fig 2.2.b, accompanied by higher CR. The distortion can be noticed easily, 

e.g., the yellow rectangle area in Fig 2.2.a, while Fig 2.2.a is almost indistinguishable from 

the original. However, the evaluation score obtained by the PSNR metric is basically the 

same (29.14 dB and 29.007 dB). On the contrary, the evaluation scores obtained by PSNR-

HVS-M and FSIM are largely consistent with human observations.  Higher scores 

correspond to high-quality images. For PSNR-HVS-M, the scores are 32.814 and 47.608 

dB, respectively, and the same is true for FSIM. This given evidence that the HVS-based 

metric and multi-strategy-based metrics are more reliable than the classic PSNR metric. It 

is necessary to employ them in distortion controlling for lossy compression. 

Through the data in Table 2.2, we can also find that according to the results of PSNR-

HVS-M and FSIM evaluation, a) in the case of small CR (5~10), the decompressed image 

quality of the JPEG coder is the best, and the distortions are invisible; b) With the 

a 
 

b 
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compression ratio increases, the advantages of the AGU and BPG coders gradually 

become significantly compared to the JPEG coder; c) when the compression ratio reaches 

20,modern coders clearly outperform JPEG, the BPG coder obtains the best performance, 

followed by the AGU coder. 

Based on these comparisons and observations, the following conclusions can be 

drawn:  

1) the choice of visual quality metric is important in work that provides the desired 

visual quality value for lossy compression;  

2) modern coders, such as AGU, BPG, etc., can get better performance than the 

classic compression coder JPEG at larger CR; 

3) the image complexity also has a great impact on the quality of the decompressed 

image. 

Choice of compression technique is determined by many factors, including priority of 

requirements as rate-distortion characteristics, simplicity of providing a desired quality or 

CR, computational efficiency, availability of portable device realizations or the 

corresponding platforms, etc.[40]. In this study, we investigated the modern lossy 

compression coder, AGU, ADCTC, SPIHT, and BPG to compress the general images, 

medical images, and remote sensing images. Among them, both the gray-scale images and 

RGB or three-channel images are considered.  

 

2.3 Prediction of visual quality in lossy compression 

 

The prediction method is one way to provide a desired quality of image compressed 

in a lossy manner since the CCP setting can be taken based on this prediction. It employs 

pre-established dependences of a given metric on CCP based on some approximation, and 

no iteration is involved in the entire process[101, 173].  However, the accuracy of quality 

providing is worth improving. 

Recently, a group of methods has been introduced[173, 174], which obtain and 

“analyze” statistics in a limited number of blocks in the DCT domain. However, these 

methods are mainly intended for the prediction and providing of such quality metrics as 
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MSE or PSNR that are known to be inadequate for the visual quality of distorted images. 

Therefore, the prediction method needs more reliable evaluation metrics to test. In addition, 

it needs to be tested on other compression encoders to expand its application breadth. 

 

2.3.1 Prediction of visual quality in lossy compression for medical images 

 

Concerning lossy compression of medical images, the so-called visually lossless 

compression is often required. This means that the introduced distortions should be 

invisible to enable image diagnostic value. 

In visually lossless compression, there are several important requirements to be 

satisfied. First, to be reliable, compression should be based on using adequate visual 

quality metrics and invisibility thresholds [163]. Second, a desired value of a used visual 

quality metric has to be provided quickly enough and with appropriate accuracy. Since, in 

this paper, we consider grayscale images, it is possible to use PSNR-HVS-M [163],which 

is one of the most reliable visual quality metrics and which has a priori known threshold of 

distortion invisibility approximately equal to 42 dB [163]. Besides, as a particular case, we 

consider the coder AGU based on DCT[108] that performs better than JPEG and slightly 

better than JPEG2000. 

1) Basic dependences for image compression by AGU 

In order to evaluate the distortion introduced by lossy compression more 

comprehensively, three evaluation metrics are employed. One is standard PSNR, and two 

other ones are PSNR-HVS and PSNR-HVS-M[163], which are defined as equation (1.23) 

(1.24) (1.25), respectively. Based on their computational model, there is a certainty of 

behavior that PSNR, PSNR-HVS, and PSNR-HVS-M have equal values if distortions are 

like additive white Gaussian noise and the masking effect is absent. 

The dependences obtained for 512x512 pixel test image MRT_prepared are presented in 

Fig. 2.3.a. Analysis of the plots allows concluding the following. For QS<7, all metrics are 

larger than 40 dB (PSNR-HVS-M exceeds 50 dB). This means that introduced distortions 

are invisible. In [174], the following approximation has been introduced for small QS: 

𝑀𝑆𝐸𝐻𝑉𝑆−𝑀 = 0,02896 × 𝑄𝑆1.976 (2.2) 
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where MSEHVS-Mis calculated as a mean value of local estimates of in blocks, the number 

of such local estimates is about ImJm/64, Im and Jm denote an image size.  For the traditional 

approach, all possible block positions have to be taken into account and have to be 

calculated after image compression and decompression by a given coder. 

a b 

c d 

Figure 2.3 - Medical test images and dependences of quality metrics on QS, a) image 

Mrt_prepared, b) image dental, c) dependence curve of the image Mrt_prepared, d) dependence 

curve of the image dental  

The interval of larger QS (from 7 to approximately 30 corresponds to MSEHVS-M from 

1 to about 30, Fig. 2.3) relates to the most important practical cases. When QS increases, 

all metrics decrease (Fig. 2.3.c). PSNR-HVS becomes sufficiently smaller than PSNR for 

the same QS.  

Fig. 2.4, taken from[174] with the fitted approximation curve[175], shows the scatter-

plot for which each point corresponds to determine one test image compressed with a 

given QS. As it is seen, values for the same QS can be quite different, especially for 

QS>30, where values can differ by several times.    
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Figure 2.4 - Scatter-plot of MSEHVS-M on QS for lossy compression of grayscale images 

for the coder AGU 

This means that predictions like (2.2) can lead to errors for particular images that can 

be too large, and a more accurate prediction is needed. An approach is to use image 

statistics in a limited number of image blocks[28]. 

2) Prediction method based on preliminary analysis 

In this study, MSEHVS-Mis calculated as an estimate before compression using a 

limited number of blocks of size 8x8 pixel. It is based on the assumption that there is a 

correlation between MSEHVS-M for AGU coder and MSEHVS-M determined in a limited 

number of 8x8 pixel blocks. The choice of 8×8 pixel blocks aims to carry out fast 

processing since it has fast hardware and software realizations[176]. 

First, N 8x8 pixel blocks are chosen. Then, 2D DCT is calculated for each block by 

getting D(k,l,n) as follows. 

Ddq(k,l,n)=QS*([D(k,l,n)/QS])                                 (2.3) 

where [ • ] denotes rounding-off to the nearest integer. k=0,…7 and l=0,…7 are spatial 

frequency indices, and n=1,…,N is a block index.  

Second, MSEHVS-M(n) is calculated using the Table of spatial frequency weights and 

masking rule (see [13] for more details). Finally, the average MSEHVS-MΣ is calculated for 

all blocks, and MSEHVS-M for AGU is predicted. 

 
a 

 
b 

Figure 2.5– Scatter-plots of estimates of MSEHVS-MΣ for different number of analyzed 

blocks and MSEHVS-M_AGU for images compressed by AGU for Baboon (a) and Barbara (b)  
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The scatterplots are presented for two more typical test images, Baboon (Fig.2.1.a) 

and Barbara (Fig.2.1.b ), where the former is highly textural, and the latter is the middle 

complexity image (Fig.2.5). 

For each QS and each N, we have calculated the mean and standard deviation of the 

ratio S = MSEHVS-MΣ / MSEHVS-M_AGU. The obtained data are presented in Fig. 2.6. 

There is an interval of QS from 1 to approximately 7 where the mean of S is quite 

large (considerably larger than unity) with an obvious tendency to decrease quickly. 

Standard deviation values are large in this interval too. This effect cannot be seen in 

Fig.2.5 since although the values of MSEHVS-MΣ are larger than MSEHVS-M_AGU, they are 

still very small. If QS>7, then the ratio has stable values close to 1.34. This ratio does not 

depend upon the number of analyzed blocks. This means that the predicted MSEHVS-M_AGU 

can be calculated easily as 

MSEHVS-M_pred= MSEHVS-MΣ /1,34                                       (2.4) 

 

Figure 2.6 - Mean and standard deviations of the ratio MSEHVS-MΣ / MSEHVS-M_AGU for all 

test images compressed by AGU 

Based on the above analysis, an algorithm can be proposed as follows. 

1) calculate initial QS as QSinit= (MSEHVS-M des/0.02896)1/2; 

2) if QSinit ≤7, use this QSinit as the final quantization step QSfin for compression;  

3) if QSinit>7, then calculate MSEHVS-MΣ using a limited number of blocks and 

recalculate it to MSEHVS-M_AGU;  

4) compare this MSEHVS-M_AGU to MSEHVS-M des; if accuracy is satisfactory (e.g., 

MSEHVS-M_AGU differs from MSEHVS-Mdes by less than ε%), then use QSinit as QSfin; 

otherwise, determine QSfinas  
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QSfin = QSinit (MSEHVS-M des / MSEHVS-M_AGU )
1/2                                      (2.5) 

where it is supposed that MSEHVS-M AGU is approximately proportional to QS2. 

3) Verification results 

We have applied the proposed algorithm to nine test images for two values of 

MSEHVS-M des, namely equal to 4, which corresponds to the invisibility of distortions, and 

equal to 10, which relates to visible but not annoying distortions. The obtained data are 

presented in Tables 2.3 and 2.4, respectively. As it follows from the analysis of data in 

Table 2.3, MSEHVS-MΣ and MSEHVS-M_AGU derived for QSinit are mostly considerably 

smaller than MSEHVS-M des. This means that the approximation (2.1) is not quite accurate 

for small QS. Thus, correction like (2.4) is needed. After correction, the provided MSEprov 

is around MSEHVS-Mdes, some values of MSEprov are larger than MSEHVS-M des (this happens 

for complex structure images), and some are smaller (this takes place for simple structure 

images).  Note that CR values vary in very wide limits from 4…5 for complex structure 

images to almost 19 for simple structure ones.   

Table 2.3 – Data for MSEHVS-M des=4 

Image QSinit MSEHVS-MΣ MSEHVS-M_AGU QSfin MSEprov CR 

Aerial 12 2,014 1,503 20 6,195 5,75 

Airfield 12 2,431 1,814 18 6,129 4,26 

Baboon 12 2,041 1,523 19 5,769 4,50 

Barbara 12 3,653 2,726 15 3,505 8,70 

Diego 12 1,840 1,373 20 6,790 4,50 

Frisco 12 4,314 3,220 13 3,482 18,5 

Goldhill 12 2,744 2,047 17 5,648 8,60 

Lenna 12 3,648 2,722 15 4,254 12,5 

Mrt_prepared 12 2,381 1,777 18 4,130 14,9 

Table 2.4 – Data for MSEHVS-M des=10 

Image QSinit MSEHVS-MΣ MSEHVS-M_AGU QSfin MSEprov CR 

Aerial 19 6,136 4,579 28 14,33 7,72 

Airfield 19 7,984 5,958 25 13,79 5,61 

Baboon 19 6,626 4,945 27 14,27 5,95 

Barbara 19 7,937 5,923 25 10,38 13,2 

Diego 19 5,785 4,317 29 18,50 6,34 

Frisco 19 8,292 6,188 24 9,132 30,8 

Goldhill 19 9,066 6,765 23 11,24 12,1 

Lenna 19 8,949 6,678 23 8,909 19,2 

Mrt_prepared 19 6,126 4,572 28 10,82 21,2 
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Consider now the data in Table 2.4. Again, MSEHVS-MΣ and MSEHVS-M_AGU for QSinit are 

considerably smaller than MSEHVS-M des. After correction, they become to be around MSEHVS-

M des, although some of them occur to be too large as for the test image Diego. Since more 

distortions are introduced, CR values have increased compared to data in Table 2.3.   

Fig. 2.7 presents the test image MRT_prepared used in our analysis with the marked 

fragments that should be paid attention to in the analysis. The enlarged green frame 

fragment for compression with providing PSNR=38 dB is presented in Fig. 2.7.b, where 

the introduced losses are invisible. The same fragment for compression with providing 

PSNR=36 dB is presented in Fig. 2.7.c, where the introduced losses become noticeable. 

a 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

c 

Figure 2.7 - The test image MRT_prepared, a) original image, b) compression with providing 

PSNR=38 dB, c) compression with providing PSNR=36 dB 

 

2.3.2 Prediction of visual quality in lossy compression by SPIHT 

 

Given the results achieved by AGU encoders for a range of visual metric prediction 

methods, we hope to generalize it to other encoders, such as DWT-based encoders. 

The SPIHT coder is a typical representative of lossy compression techniques based 

on DWT, which was developed from the early EZW (embedded zero-tree wavelet) image 

compression technology. Compared with DWT-based JPEG2000, SPIHT has lower 

computational complexity, which makes it widely used in lossy compression. It is easy for 

SPIHT to provide a desired CR. In addition to CR characterizing the encoder and a 

compressed image, an end-user also needs to consider whether the compressed image 

quality meets the quality requirements, i.e., is a desired quality provided. The evaluation or 
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prediction of compressed image quality is essential for numerous applications, and many 

quality metrics can be used for this purpose[137, 177, 178].  

There are two favorable obstacles that allow predicting visual quality for the SPIHT 

coder in an indirect but quite fast and accurate way. One obstacle is that the performance 

characteristics of SPIHT are quite similar to those ones [179] of the DCT-based coder 

AGU. Another obstacle is that several simple and fast procedures for predicting the 

performance of AGU have been proposed recently[40, 177]. Thus, our idea consists in 

exploiting experience in the prediction of AGU coder characteristics for the prediction of 

SPIHT performance parameters. 

1) Comparison of the Dependences for SPIHT and AGU 

                           a                                                     b                                                     c 
Figure.2.8 - Test images dependence curve a) high complexity image Baboon; b) low 

complexity image MRT_prepared; c) average dependences for AGU and SPIHT 

Let us analyze rate-distortion curves obtained for two test images, the images Baboon 

(see Fig.2.2.a) and Mrt_prepared (see Fig.2.3.a). They are presented in Figures 2.8.a and 2.8.b 

as dependences of PSNR and PSNR-HVS-M on CR. It is possible to see that there is a 

strict connection between the dependences for the considered coders. To get a better 

understanding, the average dependence curves of visual quality metrics on CR under two 

encoders are given in Fig. 2.8.c. 

If the visual quality values of multiple images are averaged, the compressed visual 

quality dependence curves of SPIHT and AGU codes are still similar, and the deviation is 

basically fixed for each CR value. After calculation, the average deviation of PSNR 

(SPIHT with respect to AGU) is 0,6232 dB, and the average deviation of PSNR-HVS-M 

(SPIHT with respect to AGU) is 0,9337 dB. Then, the visual quality metrics value for 

SPIHT can be calculated as 
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PSNRSPIHT = 𝑃𝑆𝑁𝑅𝐴𝐺𝑈 − 0,6232 𝑑𝐵 (2.6) 

PSNR-HVS-MSPIHT = 𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝐴𝐺𝑈 − 0,9337 𝑑𝐵 (2.7) 

2）Prediction method for SPIHT 

By comparing the compression dependence curves of AGU and SPIHT, it can be 

expected that the prediction of SPIHT compression can be quickly realized by means of 

the prediction result of the decompressed image quality of AGU. 

However, there is one key problem to be solved. The control parameter of SPIHT is 

bpp, but the PCC of AGU is QS. In addition, the predicted connection between AGU and 

SPIHT is based on the dependence of decompressed image quality on CR. Consequently, 

to predict the compressed image quality of SPIHT for a given bpp, one has to determine 

the corresponding QS for AGU.  

For a given BPP, the first stage task is to convert it to CR. In SPIHT, CR and bpp are 

strictly dependent where on 8-bit grayscale images. The conversion can be achieved by the 

following equation[180]. 

CR≈8/bpp                                                               (2.8) 

The second stage is the conversion from CR to QS (used CCP in AGU). It is not an 

easy work because it depends on the image at hand. As known, there is direct dependence 

between distortions due to DCT coefficient quantization and losses in compressed data. 

We will use the parameter P0q,which denotes the mean probability that quantized DCT 

coefficients in 8x8 blocks are equal to zero [40, 177]. 

𝑃0q = (∑ 𝑁𝑛
𝑁𝑏𝑙
𝑛=1 )/64𝑁𝑏𝑙                                               (2.9) 

where Nn denotes the number of DCT coefficients to be zeroed after quantization (this 

happens if the DCT coefficient magnitude is less than QS/2) for an n-th block, Nbl denotes 

the number of the considered 8x8 pixel blocks randomly chosen in a considered image. 

The larger P0q (more coefficients are assigned zero values), the greater CR. The function 

that approximates this relationship can be expressed as[177]: 

CR = 0,9462exp(2,895P0q) + 1,045 × 10−13 𝑒𝑥𝑝( 35,52𝑃0𝑞)         (2.10) 

This means that P0q can be predicted for a given CR or bpp. In [40], a method for 

predicting the PSNR for AGU is proposed. This method calculates the DCT coefficients in 
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8x8 pixel image blocks and quantizes them as Dq(k,l,n) with  (2.2).As one knows, standard 

PSNR is estimated as (1.22) (1.23).Besides, a quick and accurate MSE prediction 

approach has been proposed for AGU based on a given QS. Let us calculate the 

differences as 

∆𝐷𝑞(𝑛, 𝑘, 𝑙) = 𝑄𝑆 × 𝐷𝑞(𝑛, 𝑘, 𝑙) − 𝐷(𝑛, 𝑘, 𝑙), 𝑘 = 0,… ,7; 𝑙 = 0,… ,7 (2.10) 

and then the MSE for an n-th block can be predicted by the equation (2.11). 

𝑀𝑆𝐸𝑛 =
1

64
∑ ∑ (∆𝐷𝑞(𝑛, 𝑘, 𝑙))27

𝑙=0
7
𝑘−0                                              (2.11) 

The MSE estimate for the entire image can be calculated as follows: 

              𝑀𝑆𝐸 =
1

𝑁
∑ 𝑀𝑆𝐸𝑛

𝑁
𝑛=1 =

1

64𝑁
∑ ∑ ∑ (∆𝐷𝑞(𝑛, 𝑘, 𝑙))27

𝑙=0
7
𝑘=0

𝑁
𝑛=1             (2.12) 

After that, the metric PSNR can be estimated according to (1.23). The coefficients 

Dq(k,l,n) are collected for all considered blocks, and, thus, one can easily predict visual 

quality metrics for any QS. 

Concerning the visual quality metric PSNR-HVS-M, our paper[40] shows how 

MSEHVS-M can be quickly and quite accurately predicted for AGU (see also Section 2.3.1). 

P0q reflects the percentage of DCT coefficient values returned to zero after quantization. 

Known CR allows determining P0q using (2.9). Of course, it is not easy to find the inverse 

function, but P0q can be derived using piecewise linear interpolation. Then, one needs an 

algorithm for obtaining the QS corresponding to the determined P0q and, respectively, CR 

for the considered image. One very simple version of this algorithm is shown in Fig. 2.9. 

First, set an initial value of QS, e.g., equal to 0, and then gradually increase it until 

the percentage of DCT coefficients with absolute values smaller than QS/2 is smaller than 

P0q. When this happens, record QS value. The fourth stage in the prediction process is to 

calculate the PSNR and PSNR-HVS-M values corresponding to the recorded the QS. After 

this, complete the entire prediction process of the visual quality of the SPIHT compression 

coder via AGU using expressions (2.6) and (2.7). 
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Figure 2.9- Flow chart for calculating QS 

3) The prediction results and analysis 

We have considered two values of bpp in our experiments, namely 0.5 and 1. To 

analyze prediction accuracy, two visual quality metrics, PSNR and PSNR-HVS-M, have 

been employed. In the experiment, we selected 300, 500 and 1000 as the number of 

random image blocks. The comparison has shown that the data accuracy for 500, and 1000 

blocks has not improved compared to the case of 300 blocks, but the time consumption has 

increased because of the increase in the number of calculations. Therefore, in this paper, 

300 is selected as the number of random image blocks for the experiment. In the 

experiment, we selected nine commonly used images (including highly complex texture 

images, moderately complex texture images, and simple texture images). The PSNR 

prediction experimental data are presented in Table 2.5, corresponding to the visual quality 

prediction data with bpp of 0,5 and 1, respectively. 

 



 

 

73 
 

Table1.5–Statistics of PSNR data in prediction for SPIHT 

Test 

image 

bpp=0.5 bpp=1 

PSNRpre PSNRreal Error 
Time 

(s) 
PSNRpre PSNRreal Error 

Time 

(s) 

Goldhill 33,6655 33,1294 -0,5361 0,0977 36,2791 36,6047 0,3256 0,0828 

Baboon 26,1117 25,6281 -0,4836 0,1964 30,7143 29,8422 -0,8721 0,1227 

Lenna 37,0936 37,2353 0,1417 0,0859 40,778 40,4585 -0,3195 0,0629 

Barbara 35,2759 32,0839 -3,192 0,1097 39,0924 37,4122 -1,6802 0,0689 

Aerial 28,6229 28,7333 0,1104 0,1832 32,7749 33,1914 0,4165 0,1079 

Airfield 29,0245 27,4969 -1,5276 0,1558 31,9097 30,3014 -1,6083 0,1056 

Frisco 42,8915 42,6874 -0,2041 0,0598 48,3571 47,7694 -0,5877 0,0638 

Diego 26,5196 26,6317 0,1121 0,1912 29,4761 29,4905 0,0144 0,1250 

Mrt_prepared 39,4486 38,2106 -1,238 0,0869 47,7793 44,1214 -3,6579 0,0578 

SSD   1,0274    1,2120  

 

In this Table, PSNRpre represents the PSNR value of the image processed by the 

SPIHT encoder calculated by the program, and PSNRreal is the PSNR value of the image 

actually compressed/decompressed by SPIHT. The error refers to the deviation between 

the predicted value and the actual value, and time refers to the time spent in the prediction 

process. In order to statistically analyze the accuracy of the prediction, the SSD (sample 

standard deviation) calculation was performed for each group of errors as  

𝑆 = √
1

𝑁−1
∑ (𝑋𝑖 − �̅�)2𝑁

𝑖=1                                          (2.13) 

Table2.6–Statistics of PSNR-HVS-M data in prediction for SPIHT 

Test image 

bpp=0.5 bpp=1 

PSNR-

HVS-Mpre 

PSNR-

HVS-

Mreal 

Error Time 

(s) 

PSNR-

HVS-

Mpre 

PSNR-

HVS-

Mreal 

Error Time 

(s) 

Goldhill 36,2594 33,9034 -2,3560 0,2408 40,8164 40,1590 -0,6574 0,2105 

Baboon 27,8017 26,6977 -1,1040 0,3336 35,0034 32,6220 -2,3814 0,2583 

Lenna 39,0606 39,5323 0,4717 0,2125 44,1417 44,9048 0,7632 0,1926 

Barbara 36,4551 33,6409 -2,8142 0,2305 42,6237 40,5339 -2,0898 0,2024 

Aerial 30,2541 29,3158 -0,9383 0,3006 37,7715 36,6634 -1,1081 0,2786 

Airfield 31,3978 29,1119 -2,2859 0,2706 36,7416 33,5935 -3,1481 0,2538 

Frisco 42,9987 42,5198 -0,4789 0,2005 46,7146 48,9363 2,2217 0,1926 

Diego 28,2534 27,4636 -0,7898 0,3229 33,7246 33,3702 -0,3544 0,2790 

Mrt_prepared 42,7600 40,2362 -2,5238 0,1905 44,8965 48,5444 3,6479 0,1584 

SSD   1,0531    2,0946  

 

From the analysis of data in Table 2.5, it can be seen that the prediction accuracy of 

this method is good, the maximum deviation is about 3,66 dB, and the overall distribution 
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of errors is reasonable. The sample standard deviations based on nine images are 1,0274 

dB and 1,212 dB, respectively. Thus, accuracy is better than for the two-step method[181].  

The data on PSNR-HVS-M are given in Table 2.6. Here PSNR-HVS-Mpre is the 

PSNR-HVS-M value of the image processed by the SPIHT encoder calculated by the 

program, and PSNR-HVS-Mreal is the PSNR-HVS-M value of the image actually 

compressed/decompressed by SPIHT. 

The deviation of PSNR-HVS-M when bpp is 0,5 is slightly larger than that one for 

bpp is 1. The maximum deviation is 3,65 dB, and the sample standard deviations are 

1,0531 dB and 2,0946 dB, respectively. At the same time, because the calculation of 

PSNR-HVS-M involves DCT transformation and DCT inverse transformation, the time 

consumed increases, about two times the PSNR prediction. From the statistical data of 

PSNR and PNSR-HVS-M, this prediction method can predict SPIHT compressed image 

quality very well on the basis of AGU, and the accuracy has been improved. Table 2.7 

presents data for analysis of time efficiency. In order to more objectively understand the 

time efficiency of the SPIHT visual quality prediction method, the average prediction time 

of 9 test images is used as a measurement factor in Table 2.7. 

Table 2.7–Average time consumption(s) comparison (PSNR and PSNR-HVS-M) 

bpp value Timepre TimeTwo-step TimeSPIHT 

0,5 0,2558 0,8937 0,3914 

1 0,2251 0,9220 0,3005 

 

In Table 2.7, two sets of data were measured for bpp of 0,5 and 1, and the prediction 

and calculation of PSNR and PSNR-HVS-M two visual quality metrics systems were 

conducted. Timepre refers to the time required to obtain the visual quality value through the 

prediction method; Timetwo-step represents the time required in the first step of 

compression/decompression through the two-step method and obtains the visual quality 

value; TimeSPIHT is the time required to SPIHT compressed images. 

As can be seen from the data in Table 2.7, the newly proposed prediction method has 

greatly improved the time efficiency because it avoids the compression/decompression 

step. The average time required is 1/3 of the two-step method and is less than the time 

required for the actual compression process of SPIHT. 
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2.4 The primary two-step compression method for providing the desired visual quality 

 

Given the low time efficiency of iterative methods and the unsatisfactory accuracy of 

prediction methods, an intelligent and efficient method to provide the desired visual 

quality for lossy compression is demanded. It should have low computational complexity 

and take into account some aforementioned requirements to lossy compression. Besides, it 

is also required to have acceptable control accuracy and ubiquity on existing popular lossy 

encoders, as well as compatibility with various advanced visual quality evaluation metrics. 

To address this problem, an original two-step compression method that takes into account 

both time efficiency and accuracy has been proposed in[42, 181]. 

The primary two-step method[42] is implemented as follows: Through the initial 

(first step) compression with CCP determined on the basis of a priori data, a more 

reasonable visual quality metric value is obtained, and the CCP value is then corrected to 

perform the final compression that, on the average, ensures that visual quality satisfies the 

user's requirement better. However, the drawbacks of this approach are not studied and 

explained. The case of visual quality metrics is not considered at all. 

In this section, we apply this primary two-step compression method to AGU and 

BPG encoders, considering various visual quality evaluation metrics when evaluating 

decompressed image quality. The performance of the basic method in the application is 

deeply analyzed. 

 

2.4.1 The primary two-step approach to providing a desired visual quality in AGU lossy 

compression 

 

As a case study, we analyze the compression method for AGU[108]based on DCT, 

for which the varied CCP is the quantization step (QS). The metrics PSNR, PSNR-HVS, 

and PSNR-HVS-M [38, 150]are employed to evaluate the decompressed image quality. 

The two latter ones are applicable when the end-user of the image-based system is a 
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human being. The experiments are conducted on the gray-scale images. Its accuracy and 

performance are tested from different aspects. 

1) The fundamental of primary two-step method in lossy compression 

The two-step method is proposed based on the average distortion curve for trend 

prediction. In fact, the average distortion curve provides preconditions for calculating the 

initial (rough) value of CCP. The method of obtaining the average distortion curve is 

explained below. 

First, some images are chosen as a basic image set, which should be typical for 

different image application fields to make the average distortion curve trend more general. 

Second, when obtaining the average distortion curve, it is necessary to first set QS to 

a series of values for each image and obtain the corresponding value of the visual quality 

metric. Then, one averages data for each QS point and, thus, gets the average 

rate/distortion curve. In this way, the average distortion curves have been obtained for the 

aforementioned three visual quality metrics. The results are shown in Fig.2.10. 

It can be found that no matter for PSNR, PSNR-HVS, or PSNR-HVS-M, the 

changing trend of the distortion curves is very similar. Based on this characteristic, the 

average rate/distortion curve (obtained in advance offline) is utilized to obtain the initial 

value of PCC and perform the first compression. The metric value obtained by the first 

compression will be close to the desired value, but the error is uncertain (different pictures 

have different errors; of course, this can also be observed in Fig. 2.10). Then, the second 

compression is performed. 

a b c 

Figure. 2.10 -The average rate/distortion curves of AGU coder for gray-scale images, a) 

PSNR, b) PSNR-HVS, c) PSNR-HVS-M 
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Third, the CCP needs to be corrected before the second compression step. This 

correction is related to the error obtained by the first compression. The following formula 

can be used in the parameter correction. 

𝑄𝑆𝑑𝑒𝑠 = 𝑄𝑆𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅𝑑𝑒𝑠−𝑃𝑆𝑁𝑅𝑖𝑛𝑖𝑡

𝑀′
                                         () 

where QSinit is the initial value of QS (rough value from average distortion curve), PSNRinit 

is the PSNR value obtained after the first step compression, PSNRdes is the desired value of 

PSNR, M＇is the average distortion curve derivative corresponding to QSinit. After linear 

estimation, a QSdes value closer to the desired value can be obtained for each image. In the 

second step, compression is performed with the QS corrected for the image as a parameter.  

The calculation methods for the other two visual quality metrics are the same and are 

executed with the help of the following formulas. 

𝑄𝑆𝑑𝑒𝑠 = 𝑄𝑆𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅−𝐻𝑉𝑆𝑑𝑒𝑠−𝑃𝑆𝑁𝑅−𝐻𝑉𝑆𝑖𝑛𝑖𝑡

𝑀′
                      () 

𝑄𝑆𝑑𝑒𝑠 = 𝑄𝑆𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅−𝐻𝑉𝑆−𝑀𝑑𝑒𝑠−𝑃𝑆𝑁𝑅−𝐻𝑉𝑆−𝑀𝑖𝑛𝑖𝑡

𝑀′
                   () 

By correcting QS once, a large increase in accuracy is expected to be achieved in the 

second compression step. 

2)  Experiment implemented for AGU coder 

To better understand how this method works, we set desired values of our metrics 

equal to 30, 35, and 40 dB in our experiments. They have been carried out for PSNR, 

PSNR‐HVS, and PSNR‐HVS‐M. Detailed data for one of the sets of tests are shown in 

Table 2.8. 

Table 2.8–Statistics and parameters of providing PSNR-HVSdes=30 dB 

Test Image QSinit PSNR‐HVSinit ΔQS QSrec PSNR‐H

VSprov 

Goldhill 38,9283 29,8194 -1,0614 37,8669 30,0071 

Baboon 38,9283 28,2555 -9,7143 29,214 30,4306 

Barbara 38,9283 30,8412 4,6843 43,6126 30,1307 

Lenna 38,9283 31,7084 9,5133 48,4416 30,4254 

Aerial 38,9283 28,8464 -6,4239 32,5044 30,1949 

Airfield 38,9283 28,2629 -9,6731 29,2552 30,3089 

Frisco 38,9283 32,6046 14,5038 53,4321 30,605 

Diego 38,9283 28,0752 -10,718 28,21 30,5263 

Mrt_prepared 38,9283 31,5009 8,3578 47,2861 30,1604 

Variance  2,9739  0,0401 
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The variances after the first compression and the second compression are calculated, 

respectively. From the results of this set of data, after the second step of compression, the 

variance is greatly reduced, and the error is well controlled. For PSNR and two HVS-based 

metrics for three desired levels of visual quality, we conducted nine sets of experiments, 

and the statistical information of the experimental data is shown in Table 2.9. 

Table 2.9–Statistics obtained for nine test images 

Quality Metric Mdes VARfis VARsec MAXΔfinal 

PSNR 40 4,4876 0,4714 1,2125 

PSNR 35 7,1179 1,6761 3,6067 

PSNR 30 9,1183 9,0517 5,2102 

PSNR‐HVS 40 0,7906 0,0408 0,3583 

PSNR‐HVS 35 1,6575 0,0369 0,6017 

PSNR‐HVS 30 2,9739 0,0401 0,605 

PSNR‐HVS‐M 40 0,3675 0,0108 0,257 

PSNR‐HVS‐M 35 1,0119 0,1041 0,720 

PSNR‐HVS‐M 30 2,0312 0,0280 0,465 

 

Here Mdes is the desired value of the considered visual quality metric, VARfis is the 

variance of visual quality metric for nine test images obtained after the first-stage 

compression, VARsec is the variance of visual quality metric obtained after the second 

(correcting) step of compression, MAXΔfinal is Maximum error between Mdes and the 

provided values Mpro. 

3) Analysis of the results 

It can be seen from Table 2.8 that after the two-step approach, the variances tend to 

reduce, and the data become more stable than the ones in the first step; the error between 

the desired visual quality (PSNR-HVSdes) and the provided visual quality (PSNR-HVSprov) 

does not exceed 0,605 dB, which is a sufficiently good accuracy. Compared with the 

analysis of PSNR results in the paper [182], for HVS-metrics, the provided accuracy does 

not depend on the complexity of a compressed image. 

In Table 2.9, the results show that the two-step approach has generally improved the 

accuracy of providing the value of Mdes for the metrics PSNR-HVS and PSNR-HVS-M. 

After two steps, the variance has reduced to about 1/10 to 1/70 of the one-step variance, 

indicating that the QS correction has played a positive role. The maximum variance is 0,1, 
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indicating that data fluctuations are small and the results are relatively stable. Meanwhile, 

the maximum error is 0,605 dB (for PSNR-HVS) and 0,720 dB (for PSNR-HVS-M). 

In order to analyze the performance of the visual quality metrics values provided by 

this method, a comparison experiment has been carried out. We got three images for the 

test image Goldhill for three values of QS, namely QS=30, 35, and 40. The compressed 

images are shown in Fig.2.11, where metrics' values are given as well.  

Figure. 2.11– Comparison of images for, a) original image, b) QS=30, c) QS=35,d) QS=40  

a. original image b. QS=30, PSNR=33,4639 dB, PSNR-

HVS=31,5263 dB, PSNR-HVS-M =35,0879 dB, 

CR =16,7483 

c. QS=35, PSNR=32,7341 dB, PSNR-

HVS=30,5316 dB, PSNR-HVS-M =33,7804 dB, 

CR =20,2303 

d. QS=40, PSNR =32,1059 dB, PSNR-

HVS=29,6638 dB, PSNR-HVS-M =32,6397 dB, 

CR =23,9576 
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A comparison of the two images below (for QS=30 and 35) shows that the difference 

values for the corresponding metrics are about 1 dB (the difference is the smallest for 

PSNR and the largest for PSNR-HVS-M). For this case, slight differences in compressed 

images can be noticed, in particular, for fragments marked by green rectangles.  

Comparing the images for QS=30 and QS=40 (Fig.2a and Fig.2c), larger differences 

in metrics' values are observed (they are about 1,36 dB for PSNR, about 1,86 dB for PSNR-

HVS, and about 2,45 dB for PSNR-HVS-M). More obvious differences (shown by blue 

marks) can be noticed. Then, it can be concluded that if PSNR (or PSNR-HVS or PSBR-

HVS-M) changes by more than 0,5...1 dB, changes in visual quality can be noticed. 

Thus, these differences can be used as an accuracy threshold. When the error of 

providing a desired quality is less or approximately equal to 0.5dB or less, the difference is 

more difficult to observe. 

 Recalling the results in Table 2.8 and 2.9, we can conclude that such errors are 

acceptable. It can also be considered that the proposed method is able to provide image 

quality close to a desired value with almost no error (difference) for visual quality metrics 

PSNR-HVS and PSNR-HVS-M. Meanwhile, the results for PSNRdes=30 dB show that 

there are some problems with the two-step approach in this case that should be studied 

more thoroughly.  

The use of the proposed method for DCT-based lossy compression is shown to be able 

to provide a desired visual quality of compressed images, enabling faster and better 

compression. 

 

2.4.2 A two-step approach to providing a desired visual quality in BPG lossy compression 

 

In [42], it is proved that the two-step method is able to provide the desired visual 

quality for the AGU coder By referring to the prior knowledge of the average rate-

distortion curve. However, different compression codes are implemented based on 

different principles. Consequently, it is necessary to verify whether the two-step method is 

suitable for other encoders. 
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BPG encoder is a new compression technique that outperforms JPEG in terms of 

compression quality and size of compressed images [112]. Because of its superior 

performance, the encoder has quickly gained popularity, especially in portable devices and 

online encoding applications. In view of this, it is worthwhile to offer an opportunity of 

providing a desired visual quality of images compressed by this encoder with high 

accuracy. In this section, we propose to use a two-step method in BPG compression to 

improve the accuracy of visual quality providing. In BPG, the quantizer parameter Q is 

used as the main control compression parameter [113], and it is also used as a CCP in the 

two-step method. 

To test the applicability of the two-step method in the new BPG encoder, we analyze 

the accuracy of experimental data and study the feasibility of providing a desired visual 

quality in the BPG encoder. 

1) Two-step method on BPG coder 

The two-step compression method is implemented based on the average 

rate/distortion curve obtained off-line, which reflects the dependence of visual quality on 

CCP. In the BPG encoder, the quantization parameter Q is used as CCP, here 1≤Q ≤51.A 

larger Q results in a higher CR, corresponding to lower visual quality. 

In order to obtain the average rate-distortion curve, it is necessary to collect a certain 

amount of off-line image set data and average the visual quality metric values 

corresponding to certain CCP values of the image set so as to obtain the dependence of the 

average value on the CCP. Twelve images have been selected by us as the sample image 

set, including general images and texture ones. Fig. 2.12.a and Fig. 2.12.b show the 

dependences of PSNR and PSNR-HVS-M on Q, respectively. 

The curve in Fig.2.12.a shows that the PSNR values for PSNR>40dB approximately 

coincide for almost all images (except Frisco), and in the 30dB<PSNR≤40dB interval, the 

image curves are nearly parallel, in particular, for the interval 30dB<PSNR<35dB. The 

average distortion curve and each image curve obtained on the basis of all data are also 

approximately parallel. In general, the degree of dispersion between the curves is smaller 

than for AGU[42]. Nevertheless, PSNR values for the same Q can differ considerably, by 

up to 7 dB. This causes problems in providing a desired quality.  
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a b 

Figure. 2.12 – Visual quality metrics dependence on Q in BPG coder, a) PSNR, b)PSNR-

HVS-M 

The dependences of PSNR-HVS-M on Q show the same trend, but the curves go in a 

more compact manner than the dependences of PSNR. Compared with the AGU coder in 

[42], it can be found that the visual quality linearity in BPG coder is better than the one in 

AGU, and the CCP is the control parameter Q the intention of which is to provide a 

desired quality. Meanwhile, PSNR-HVS-M values for the same Q can differ by up to 10 

dB. Recall here that, e.g., PSNR-HVS-M=35dB relates to obvious distortions, while for 

PSNR-HVS-M=42 dB, it is practically guaranteed that distortions are invisible[163]. Thus, 

the use of a given Q can lead to the different visual quality of compressed images.    

2) BPG-based experiments 

The average distortion curve of the BPG coder reflects the dependence of visual 

quality on the control parameter Q. Those curves have been obtained from the 

experimental statistical data of the image sets shown in Fig.2.13. 

Aerial Baboon Barbara Diego Frisco Goldhill 

Lenna Man Texture_1 Texture_2 Texture_3 Texture_4 

Figure 2.13- gray-scale mage set for BPG coder 
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This image set contains images that are standard in image processing, remote sensing 

images, and selected typical texture images. It can be seen that the types of images in the 

set are diversified, and the complexity of the images varies. The experimental data of this 

image set has also become the original data of the two-step method design. 

The implementation process of the two-step method on the BPG encoder is similar to 

that of the AGU. First of all, a group statistical data for the dependence of metric on Q is 

obtained from the image set, and then the average rate-distortion curve can be drawn as 

Fig 2.12. Then, the first step compression is conducted with the initial Q. The calculation 

basis is that the average value of the visual quality corresponding to the estimated value is 

sufficiently close to the desired value. This estimated value is calculated by equation 

(2.17). 

𝑄𝑖𝑛𝑖𝑡 = 𝑄𝑒𝑠𝑡 +
𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝑎𝑣𝑒

𝑀′
(2.17) 

where 𝑄𝑒𝑠𝑡 is the right margin of the interval of the average rate-distortion curve. 

After the first step compression, the visual metric is calculated for the decompressed 

image. As a case, let us take the image Goldhill and metric PNSR-HVS-M as the example, 

which is 34,071dB. This value is quite close to the desired value, but the accuracy can still 

be improved by the second step. In the second step, Q is corrected by 𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝑖𝑛𝑖𝑡. 

It is calculated using Equation 2.18. 

𝑄𝑑𝑒𝑠 = 𝑄𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅‐𝐻𝑉𝑆‐𝑀𝑖𝑛𝑖𝑡

𝑀′
(2.18) 

where 𝑄𝑑𝑒𝑠 is the corrected Q value used at the second step of compression. 

After the second step, the provided PSNR-HVS-M is 35,394dB and is closer to the 

desired value. Differently from the AGU coder, the PCC Q in BPG is only allowed to be 

set as an integer. Does this feature affect the two-step method for BPG? More experiments 

and analyses need to be carried out. 

3) Analysis of compression accuracy 

Three typical metric values, 40dB, 35dB, and 30dB, are chosen for visual quality 

metrics PSNR and PSNR-HVS-M to analyze the effect of the two-step method on BPG. 

The statistical results of the experiment are shown in Table 2.10. 
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Table 2.10 –Statistics of BPG coder for gray-scale test images 

Quality metric  Mdes VARfis VARsec MAX∆fin 

PSNR 40 1,227 0,108 1,032 

PSNR 35 3,754 0,175 1,325 

PSNR 30 1,856 0,781 2,87 

PSNR-HVS-M 40 6,243 0,343 1,05 

PSNR-HVS-M 35 3,087 0,916 2,545 

PSNR-HVS-M 30 1,463 0,274 1,072 

 

It can be seen from the statistical data that although the control parameter of BPG 

supports only integer settings, the variance after compression in the second step (after 

parameter correction) is about an order of magnitude lower than that in the first step, and 

the error after two-step compression is acceptable for practice. The error for PSNR does 

not exceed 2,87dB, and the error for PSNR-HVS-M does not exceed 2,55dB. It can be 

seen that the two-step compression method is suitable for BPG compressors and can 

provide sufficient accuracy improvement. In order to understand the specific data details, 

we use the desired value of PSNR-HVS-M to be 35dB for further analysis. 

The Qinit shown in Table 2.11 is the parameter used for the first step of compression. 

It comes from the average rate/distortion curve and equal to 35 for all images (recall the 

calculation in Section 2.3). PSNR-HVS-Minit after the first step of compression is different 

for different images. The interval of its changing is [34,071 ~ 40,838], the variance is 

3,087, and the maximum error is 5,838dB. It can be seen that although PSNR-HVS-Minit is 

around 35dB, there is a large range of its variation. At the same time, this value is used for 

feedback and calculation of the Q correction for each particular image (using Equation 

(2.18)). Using Qdes as the parameter for the second step of compression, the PSNR-HVS-

M value range that can be provided is narrowed. The range is [32,455 ~ 36,097], the 

variance is 0,916, and the maximum error is 2,545dB. Generally speaking, regardless of 

the range of change or variance, the maximum error is, in general, improved after the 

second step of compression. In particular, it can be seen that in many cases, the corrected 

parameter Q in the second step is the same as that in the first step. In this case, only one 

step is required to achieve the desired visual quality. The second step compression can be 

omitted to improve time efficiency. 
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Table 2.11 –Statistics and parameters of providing PSNR-HVS-Mdes=35 dB for BPG coder 

ingray-scale image compression 

Test image Qinit PSNR-HVS-Minit Qdesr PSNR-HVS-Mpro CR 

Aerial 35,000 35,683 35,000 35,683 5,997 

Baboon 35,000 35,374 35,000 35,374 6,929 

Barbara 35,000 35,665 35,000 35,665 16,755 

Diego 35,000 35,447 35,000 35,447 7,827 

Frisco 35,000 36,414 36,000 35,495 29,486 

Goldhill 35,000 34,071 34,000 35,394 16,831 

Lenna 35,000 35,871 35,000 35,871 31,028 

Man 35,000 34,926 34,000 36,097 10,955 

Texture 1 35,000 40,838 40,000 32,455 7,427 

Texture 2 35,000 37,937 37,000 34,762 8,456 

Texture 3 35,000 35,042 35,000 35,042 25,348 

Texture 4 35,000 35,869 35,000 35,869 17,187 

Variance  3,087  0,916  

 

There are two more interesting aspects that follow from the analysis of data in Table 

2.11: 1) The largest error occurs in Texture1, not in the Frisco image. Recall that in 

Fig.2.13, the largest deviation from the average distortion curve was for the test image 

Frisco. The selected data here is one group of data in 6 groups, and the largest deviations 

in the other groups of data appear for the test images of Texture9, Diego, Man, and Frisco, 

respectively. This shows that the occurrence of the error is not related to the original curve, 

and a good improvement effect can be achieved through the second step of correction; 2) 

The obtained compression ratio for different images varies greatly. Under the same visual 

quality, CRs vary from 6 to 31. Therefore, the two-step method provides BPG-

compression with the desired visual quality that guarantees pre-requisites for subsequent 

image processing; thus, the advantages of BPG can be maximized. 

 

2.5 Conclusions 

 

Iterative methods can provide satisfactory desired image quality for lossy 

compression, but at the cost of multiple compression/decompression runs. Time efficiency 

cannot meet application requirements on some occasions. 
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Compared with iterative methods, prediction methods can provide decompressed 

image quality predictions for lossy compression faster, which facilitates better parameter 

setting. However, the current prediction methods still need to be improved in accuracy. 

The newly proposed two-step compression method can achieve a balance between 

accuracy and time efficiency and only requires at most two compressions to achieve 

appropriate accuracy. Experiments show that this simple two-step compression method 

can work well on DCT-based AGU encoders and HEVC-based BPG encoders, providing 

better accuracy than prediction methods. 

For BPG, even a single step can meet the accuracy requirements for some images. By 

controlling the visual quality, the encoder can be set with appropriate parameters with 

maximizing the BPG compression ratio. 
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CHAPTER  3 

IMPROVEMENTS OF TWO-STEP COMPRESSION METHOD FOR GRAY-SCALE 

IMAGE 

The primary two-step compression method[42, 43] often provides the desired visual 

quality for grayscale image compression for AGU and BPG encoders. In this chapter, this 

method is further studied. Aiming at the problem of unsatisfactory accuracy in the low 

expected value of PSNR on the AGU encoder, a conditional constraint is imposed on the 

CCP correction scheme. Furthermore, with this constraint, the use of the two-step 

compression method can be generalized to the DCT-based ADCTC encoder and the DWT-

based SPIHT encoder. In addition to this constraint, this chapter also optimizes the curve 

correction model in the basic two-step compression method, which improves the 

robustness of the scheme for the SPIHT and AGU encoders. Finally, the visual quality 

accuracy is further improved through a hybrid lifting scheme combining constraints and 

optimized curve models. 

 

3.1 Modification of correction scheme of CCP in the second step 

 

The primary two-step compression method can correct the control parameters by 

averaging the distortion curve so as to calculate the specific parameters for an image to be 

compressed and finally provide the compression of the desired visual quality value. 

However, in special cases, the results obtained by this correction are unsatisfactory, the 

error cannot be reduced, and even CCP calculated at the second step occur to be negative 

which is out of sense. Let us call this situation "over-correction", and in this case, some 

constraints need to be applied to prevent over-correction and improve visual quality 

accuracy in the second step of compression. In this section, we modify the preliminary 

two-step method by judging the parameter correction bias and proposing a constraint. 

Through experiments in AGU, the constraint scheme works well, effectively avoiding 

overcorrected results. With this constraint scheme, we also generalize the two-step 

approach to the DCT-based ADCTC encoder and the DWT-based SPIHT coder. 
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3.1.1 Analysis of two-step approach for compression of texture images with desired 

quality 

 

Through the two-step compression method, the process of providing the desired 

visual quality in lossy compression has simplified and become faster than the previous 

method[81, 139]. In some practically critical situations, its accuracy is acceptable [181]. 

However, through in-depth research, it has been shown that if one needs to provide the 

desired quality characterized by the Peak Signal-to-Noise Ratio (PSNR) of about 30dB… 

35dB or smaller, the accuracy radically decreases and becomes unacceptable[42]. This 

happens more often if a compressed image has a complex structure. Meanwhile, complex 

structure (highly textural) images are ubiquitous in remote sensing imaging [183], 

industrial [184], and intelligent medical-assisted diagnostic applications [77, 88, 111]. 

Texture features are of great significance in image classification and automatic recognition 

[183]. 

To address the above problem in the AGU coder, we study the compression 

performance of complex texture images mainly employing PSNR as a quality metric, 

analyze the results, and give the limitations of the two-step method in practical 

applications. A correction scheme is proposed to improve the accuracy of quality 

providing for the two-step method after correction.  

1) Basic peculiarities of the two-step approach of AGU coder  

The term image complexity is widely used in image processing, although it has not 

been strictly specified yet. So, let us try to explain it verbally with several examples. It is a 

known fact in lossless compression[185] that an attained CR varies in certain limits 

depending upon an image lossless compression is applied to. There are images with 

“unpredicted” or “hardly predictable” structures that are compressed with CR close to 

unity. These are images with many “locally active areas” as edges, details, and/or textures. 

Similarly, there are noisy images for which efficient denoising is impossible [186]. Again, 

these are images with a high percentage of pixels that belong to locally active areas. 

Coming back to lossy compression, we can state that for complex structure images, either 

PSNR is smaller if the same CR is provided (or the same PCC is used) or CR is smaller if 
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the same PSNR is provided. To prove this, Fig. 3.1.a presents two examples of the rate-

distortion curves – dependences of PSNR on QS for the coder AGU for which QS serves 

as CCP. These dependences (Fig. 3.1.b) have been obtained for two test remote sensing 

images - Frisco and Diego – that are presented in Fig. 2.14 and which are good examples 

of simple and complex structure images, respectively. As one can see, PSNR values for a 

given QS can differ by several dB. Considering this, the proposition in [42, 181] was to 

apply some “good” initial QS at the first stage. Because of this, the primary method [42, 

181] is based on using the average rate-distortion curve for trend prediction and QS setting. 

In fact, the average distortion curve provides appropriate preconditions for calculating the 

initial (rough) value of any CCP in general and QS for AGU in the considered particular 

case.  

 
a 

 
b 

Figure 3.1 – Dependence of PSNR on QS for a) sample images and b) average curve for 

nine images compressed by the AGU coder 

In order to understand this, some comparative experiments are necessary. Let us 

employ three visual quality metrics, namely PSNR, PSNR-HVS, and PSNR-HVS-M. The 

latter two metrics consider the human visual system (HVS), and they have been shown in 

the paper[42] to work well with the two-step method. 

The comparison test results for the Airfield image are shown in Fig. 3.2. The 

similarity of images in Fig.3.2.a and Fig.3.2.b are very high, and some slight differences 

can be found (the parts marked in yellow), while one can more easily find some 

differences between images in Fig. 3.2.a and Fig. 3.2.c (these parts are marked in red). In 

this way, analysis of these images and the corresponding metrics’ values allows drawing 

the following conclusions: when the difference of PSNR values (ΔPSNR) is less than 1dB, 
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the image difference is not obvious, but when ΔPSNR is greater than or equal to 1.5dB, 

the difference in compressed image quality can be easily observed. 

a)  QS=30, PSNR =30,756dB; 

PSNR-HVS = 30,109dB; PSNR-

HVS-M = 34,714dB; CR = 7,033 

b)  QS=35, PSNR =29,770dB; 

PSNR-HVS =28,991dB; PSNR-

HVS-M =33,266dB; CR = 8,599 

c)  QS=40, PSNR = 29,036dB; 

PSNR-HVS =28,084dB; PSNR-

HVS-M = 32,108dB; CR 

=10,169 

Figure 3.2 - Comparison of decompressed images Airfield for QS=30 (a), QS=35 (b), and 

QS=40 (c) 

Particular images might have rate-distortion curves (see Fig. 3.1.a) that differ from 

the average curve (Fig. 3.1.b). This leads to the fact that for the images Frisco and Diego, 

the errors of providing PSNRdes=35 dB are 1,246 dB and 2,794 dB, respectively. This is 

less than after the first stage, but these errors are not appropriate. Such errors show that 

different accuracy of providing PSNR takes place, and this is reflected in the appearance 

of compressed images. 

2) Analysis of quality providing for the two-step lossy compression approach 

In [181], the results for the primary two-step compression method were analyzed for 

the set of test images (used in obtaining the average distortion curve). Three sets of data 

have been obtained for PSNR for three values of PSNRdes, namely, 34 dB, 37 dB, and 40 

dB. It was found from the results that the proposed two-step procedure worked well 

enough if it was desired to provide PSNR larger than 37 dB, but the error of providing the 

desired PSNR occurred to be too large for PSNRdes smaller than 35……37 dB[181].  

To better understand how the two-step method works and what are the arising 

problems, let us consider the cases of PSNRdes equal to 35 and 30 dB in more detail. Table 

3.1 presents data obtained for PSNRdes=35dB. The lower line presents variance values of 

PSNRinit and PSNRprov. It is seen that, due to the second step, variance is significantly 
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reduced compared to one-step compression. It works well for simple and middle 

complexity images (consider data for such test images as Lenna, Barbara, Goldhill). 

However, there are four test images for which the error of providing PSNRdes is greater 

than 1 dB. This means that people can clearly see the difference when looking at the 

corresponding images (recall the comparison in Fig.3.2). 

Table 3.1 –Statistics and parameters of providing PSNRdes=35dB in AGU coder for gray-

scale images 

Test image QSinit PSNRinit ΔQS QSrec PSNRprov 

Goldhill 24,60 34,503 -2,2476 22,3587 35,0117 

Baboon 24,60 32,4512 -11,5268 13,0796 37,1222 

Barbara 24,60 35,9636 4,3578 28,9642 35,0604 

Lenna 24,60 36,3968 6,3169 30,9233 35,4641 

Aerial 24,60 33,6942 -5,9054 18,701 35,5482 

Airfield 24,60 32,2547 -12,415 12,191 38,6067 

Frisco 24,60 39,574 20,6781 45,2845 36,2463 

Diego 24,60 32,1536 -12,868 11,7384 37,794 

Mrt_prepared 24,60 38,0092 13,609 38,2153 35,4429 

Variance 7,1179 1,6761 

 

It should be noted that the QSinit is obtained differently from the one in the paper [42], 

where Equation 3.1 is adopted to get a better estimate value instead of the rough value that 

occurs from the average distortion curve. 

   
'M

PSNR-PSNR
QSQS avedet

estinit +=                                                       (3.1) 

Here QSest is the value estimated from the average distortion data, PSNRave is the average 

PSNR value corresponding to the estimated QSest. 

Consider now the data for PSNRdes=30 dB. Recall here that for the cases of PSNR 

about 30 dB and less, the distortions introduced by lossy compression can be clearly 

observed, and the image quality is quite poor. The obtained data are presented in Table 3.2.   

Analysis shows the following. First, variance values for both PSNRinit and PSNRprov have 

sufficiently increased compared to data in Table 3.1 and become practically equal. Second, 

the number of images with an error larger than 1 dB has risen to 5 out of 9. This shows 

that the two-step method cannot provide appropriate accuracy for producing the desired 

PSNR when PSNRdes is about 30 dB. Again, the largest errors are observed for highly 

textural images such as Baboon, Airfield, and Diego.   
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Table 3.2 – Statistics and parameters of providing PSNRdes=30dB 

Test image QSinit PSNRinit ΔQS QSrec PSNRprov 

Goldhill 60,15 30,34 -4,24 55,90 30,639 

Baboon 60,15 26,72 -40,2 19,87 33,973 

Barbara 60,15 30,88 10,87 71,01 29,947 

Lenna 60,15 32,62 32,35 92,50 30,717 

Aerial 60,15 28,34 -20,4 39,68 30,687 

Airfield 60,15 27,05 -36,3 23,80 32,521 

Frisco 60,15 34,68 57,62 117,7 31,155 

Diego 60,15 26,44 -43,83 16,31 35,210 

Mrt_prepared 60,15 32,89 35,66 95,81 24,510 

Variance 9,1183 9,0517 

 

3) Complex texture image test experiment 

Test1.bmp Test2.bmp Test3.bmp Test4.bmp Test5.bmp Test6.bmp 

Test7.bmp Test8.bmp Test9.bmp Test10.bmp Test11.bmp Test12.bmp 

Test13.bmp Test14.bmp Test15.bmp Test16.bmp Test17.bmp Test18.bmp 

Test19.bmp Test20.bmp Test21.bmp Test22.bmp Test23.bmp Test24.bmp 

Test25.bmp Test26.bmp Test27.bmp Test28.bmp Test29.bmp Test30.bmp 

Figure 3.3 – Texture test image set for the AGU coder 



 

 

93 
 

By comparing the data, it can be seen that large errors of the designed two-step 

method often appear in images with complex structure (e.g., Baboon, Airfield, Diego). To 

analyze these effects more in detail, 30 texture images [187] have been chosen for testing. 

The image set and their titles are shown in Fig. 3.3. There are two reasons for choosing 

these images. First, these images are not in the image library from which the average rate-

distortion curve was obtained earlier. The testing of these images can more objectively 

reflect the real application of the two-step method. Secondly, these images contain texture 

structures with different degrees of complexity. The test results can, to some extent, reflect 

the impact of the complexity of the texture structure of the image on the accuracy that can 

be achieved by the two-step compression. 

Test statistics are shown in Table 3.3 for the images shown in Fig 3.3. Alongside the 

data for the PSNR metric is paid the main attention in this section, visual quality metrics 

are considered.  

Table 3.3 –Statistics for texture images 

Visual quality Metric Mdes VARfis VARsec MAXΔfinal 

PSNR 40 0,2852 0,280 1,5763 

PSNR 35 1,5048 32,3906 29,3603 

PSNR 30 3,692 N/A  

PSNR‐HVS 40 0,0314 0,0011 0,0892 

PSNR‐HVS 35 0,1862 0,0097 0,3517 

PSNR‐HVS 30 0,6208 0,1528 1,3796 

PSNR‐HVS‐M 40 5,6079 0,194 1,3653 

PSNR‐HVS‐M 35 4,6928 0,4413 1,5423 

PSNR‐HVS‐M 30 1,8633 0,2485 1,0542 

 

From the statistical results, it can be seen that for the metrics PSNR-HVS and PSNR-

HVS-M, the two-step method works well enough, and the variance after the two steps is 

considerable, by approximately one order, smaller than the variance of the first step. Thus, 

the error is also controlled well, which is better reflected for PSNR-HVS.  

For the PSNR metric, more problems are revealed. When the desired value is 40 dB, 

the two-step method still works well. When the desired value is 35 dB and, especially 30 

dB, abnormal situations occur. The experimental data when PSNRdes = 30 dB are shown in 

Table 3.4. 
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Table 3.4  – Statistics and parameters of providing PSNRdes=30 dB for texture images 

Test 

image 

QSinit PSNRinit ΔQS QSrec PSNRprov 

Test1 60,148 25,705 -52,881 7,267 41,734 

Test2 60,148 26,705 -40,571 19,577 33,955 

Test3 60,148 26,48 -43,339 16,809 34,965 

Test4 60,148 26,737 -40,175 19,973 33,948 

Test5 60,148 26,454 -43,659 16,489 35,042 

Test6 60,148 25,443 -56,107 4,041 46,525 

Test7 60,148 26,836 -38,956 21,192 33,384 

Test8 60,148 32,835 34,905 95,053 29,663 

Test9 60,148 30,938 11,549 71,697 30,064 

Test10 60,148 28,176 -22,458 37,691 30,757 

Test11 60,148 28,088 -23,541 36,607 30,581 

Test12 60,148 27,53 -30,411 29,737 31,182 

Test13 60,148 27,297 -33,280 26,868 32,071 

Test14 60,148 25,099 -60,342 -0,194   

Test15 60,148 25,211 -58,963 1,185 56,455 

Test16 60,148 25,285 -58,052 2,096 51,6 

Test17 60,148 24,68 -65,501 -5,353   

Test18 60,148 24,243 -70,882 -10,733   

Test19 60,148 24,398 -68,973 -8,825   

Test20 60,148 24,458 -68,234 -8,086   

Test21 60,148 25,231 -58,717 1,431 54,525 

Test22 60,148 26,108 -47,919 12,229 37,446 

Test23 60,148 25,561 -54,654 5,494 44,061 

Test24 60,148 24,709 -65,144 -4,996   

Test25 60,148 24,548 -67,126 -6,978   

Test26 60,148 25,464 -55,848 4,300 46,07 

Test27 60,148 26,863 -38,623 21,525 33,677 

Test28 60,148 27,616 -29,352 30,796 31,571 

Test29 60,148 29,249 -9,246 50,902 30,223 

Test30 60,148 25,938 -50,012 10,136 38,92 

 

As one can see, PSNRinit varies in wide limits starting from approximately 24dB and 

completing by approximately 33dB. This means that even if an image subject to lossy 

compression is fully textural (recall that the test images are taken from the database of 

texture images [187]), there is a probability that some of them can be compressed well, 

and ΔQS can be positive. However, for most textural images, the situation is the opposite. 

For the most complex structure (problematic) images, the recommended value of the 
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recommended QS occurs to be negative (marked by red), and this causes the procedure to 

stop running because QS should be positive by definition. Another observation to note is 

that for data (marked by blue), the operation of the two-step procedure is also improper 

since the errors of providing PSNRdes are generally very large.  

Table 3.5–Statistics and parameters of providing PSNRdes=30 dB with constraint 

Test image QSinit PSNRinit ΔQS QSrec PSNRprov 

Test1 60,148 25,705 -52,881 30,074 30,486 

Test2 60,148 26,705 -40,571 30,074 30,926 

Test3 60,148 26,48 -43,339 30,074 30,717 

Test4 60,148 26,737 -40,175 30,074 31,065 

Test5 60,148 26,454 -43,659 30,074 30,594 

Test6 60,148 25,443 -56,107 30,074 30,146 

Test7 60,148 26,836 -38,956 30,074 30,931 

Test8 60,148 32,835 34,905 95,053 29,663 

Test9 60,148 30,938 11,549 71,697 30,064 

Test10 60,148 28,176 -22,458 37,691 30,757 

Test11 60,148 28,088 -23,541 36,607 30,581 

Test12 60,148 27,53 -30,411 29,737 31,182 

Test13 60,148 27,297 -33,280 30,074 31,320 

Test14 60,148 25,099 -60,342 30,074 30,153 

Test15 60,148 25,211 -58,963 30,074 30,136 

Test16 60,148 25,285 -58,052 30,074 30,228 

Test17 60,148 24,68 -65,501 30,074 29,876 

Test18 60,148 24,243 -70,882 30,074 29,685 

Test19 60,148 24,398 -68,973 30,074 29,744 

Test20 60,148 24,458 -68,234 30,074 29,779 

Test21 60,148 25,231 -58,717 30,074 30,158 

Test22 60,148 26,108 -47,919 30,074 30,560 

Test23 60,148 25,561 -54,654 30,074 30,446 

Test24 60,148 24,709 -65,144 30,074 29,956 

Test25 60,148 24,548 -67,126 30,074 29,856 

Test26 60,148 25,464 -55,848 30,074 30,387 

Test27 60,148 26,863 -38,623 30,074 31,374 

Test28 60,148 27,616 -29,352 30,7958  31,571 

Test29 60,148 29,249 -9,246 50,9079  30,223 

Test30 60,148 25,938 -50,012 30,074 30,476 

Var 3,823 0,281 

 

This means that some actions have to be undertaken to make the two-step procedure 

operation better.  It is possible to observe from data in Table 3.4 that when |ΔQS| is greater 
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than 0,5QSinit, the correction starts losing sense. In our view, there are the following 

reasons behind this. Recall that the basis of the two-step method is that, within a certain 

area, the average rate-distortion curve and the rate-distortion curves of particular images 

are approximately parallel, and linear approximations can be used to describe the curves 

locally. It can be seen from the Fig 3.1that when QS<30, this effect gradually disappears. 

This is why the data marked in blue in Table 3.4 have large errors. If the error of the Minit 

at the first step continues to increase, the corrected QS will be negative. Besides, the 

correction is calculated based on the corresponding derivative M' at Minit. When the error 

of the Minit value is large, it is not consistent with the actual situation to carry out 

correction using M' corresponding to Minit. 

This shows that the primary two-step method has a certain range of applications. If it 

exceeds this range, its use needs to be restricted or the method has to be modified. We 

propose to analyze ΔQS. If |ΔQS|>0,5QSinit, then set 

ΔQS=0,5QSinit.                                                       (3.2) 

The data for the modified algorithm that employs (2.14), (3.1) and (3.2) are shown in 

Table 3.5. 

The experimental data show that when the application of the standard two-step 

method is restricted, the modified method of obtaining QS has achieved good results. The 

variance has been reduced by one order, and the maximum error does not exceed 1,58 dB. 

 

3.1.2 A two-step procedure for image lossy compression by ADCTC with a desired quality 

 

ADCTC is another DCT-based lossy compression coder, and we study how to 

provide desired visual quality in this coder for two reasons: first, it usually outperforms 

JPEG, JPEG2000, and many other compression techniques in rate-distortion sense by 

providing a sufficiently larger CR (compared to other coders) for many images in a wide 

range of quality variation [81, 119]. Meanwhile, ADCTC performs slower than many 

other compression techniques since it uses an optimized partition scheme. Then, we come 

to the urgent necessity to ensure that this compression technique is able to provide a 
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desired quality quickly enough to minimize power consumption at the software or 

hardware level to make the compression process environmentally friendly and green. 

1)Two-step compression method for ADCTC 

According to our previous work dealing with the two-step method, the first step is to 

obtain the average rate-distortion curve and its derivative values (or their approximations) 

for any QS. 

The resulting distortion curves are shown in Fig.3.4.a and Fig. 3.4.b as a test, which 

is obtained from the image library. Among them, there are four standard images (Lenna, 

Barbara, Baboon, and Goldhill), four remote sensing images, and one medical image, 

which represent a variety of images that can be subject to lossy compression. In particular, 

there are highly textural images Baboon and Diego, whilst the test images Frisco and 

MRT_prepared are quite simple. These images are shown in Fig.2.14, Fig.2.3.a, and Fig.3.2, 

respectively. 

a b 

Figure 3.4 - Particular and average rate-distortion curves for ADCTC, a) PSNR, b) PSNR-

HVS-M 

In the first step of compression, we propose to set the CCP according to the measured 

average rate/distortion curve, which is the quantization step (QS) in ADCTC coding. Then 

the equation (3.1) is utilized to calculate the initial QS. After the initial value of QS is 

obtained, the image is compressed at the first step and then decompressed to obtain the 

visual quality value corresponding to a considered image. In the second step of the 

compression procedure, a QS corrected value for this image needs to be calculated with 

the equation (2.14) using the metric value obtained in the first step to improve accuracy. 
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The corrected (desired) QS value is used at the second step of compression. The whole 

processing is similar to the AGU coder. 

2) Modification and analysis of the results  

The first nine test images (the images in the library used to obtain the average 

distortion curve) are employed to test the applicability of the two-step method to ADCTC. 

In addition, to test its practical versatility, some texture images outside the image library 

will be used for verification [183]. 

Let us first examine the performance of the two-step method on these nine test 

images. Taking the visual quality value 40 dB of metric PSNR-HVS-M as an example, the 

statistical data are shown in Table 3.6. 

Table 3.6 - Statistics and parameters of providing PSNR-HVS-Mdes=40 dB for ADCTC 

coder 

Test image QSinit PSNR-HVS-Minit ΔQS QSrec PSNR-HVS-Mprov 

Goldhill 19,16 38,802 -2,02 17,13 40,001 

Baboon 19,16 40,080 0,135 19,29 39,993 

Barbara 19,16 40,000 0,000 19,15  40,000 

Lenna 19,16 39,490 -0,86 18,29  39,895 

Aerial 19,16 40,547 0,923 20,08 40,026 

Airfield 19,16 39,272 -1,23 17,93 40,116 

Frisco 19,16 39,516 -0,82 18,34 39,804 

Diego 19,16 40,290 0,490 19,65 39,919 

Mrt_prepared 19,16 41,516 2,56 21,71 40,187 

Variance 0,6401 0,0131 

 

The analysis of data in Table 3.6 shows that all values of the visual quality metric 

after the two-step compression have improved compared to the corresponding values of 

visual quality obtained after the first step of compression. We have calculated variance 

values for the first step and for two steps. The variance value for two steps also proves that 

the two-step compression is considerably more accurate.  

It has been shown in [44] for AGU coder that the two-step method performs well for 

providing desired values of the metric PSNR-HVS-M, but it runs into problems if the 

desired PSNR is less than 35 dB. The experiment for such PSNR values has also been 
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conducted for ADCTC. Similarly to [44], we used the following modification. If the 

absolute value of ∆QS is larger than QSinit/ 2 and ∆QS is negative, then set 

QSrec = QSinit/ 2,                                                      (3.3) 

and continue the two-step compression. Due to this modification, the accuracy of 

providing the desired quality is guaranteed. The experimental data proving this are shown 

in Table 3.7. 

Table 3.7 Statistics and parameters of providing PSNRdes=30 dB for ADCTC coder 

Test image QSinit PSNRinit ΔQS QSrec PSNRprov 

Goldhill 56,05 30,17 1,988 58,033 30,038 

Baboon 56,05 26,56 -38,21 17,835 31,018 

Barbara 56,05 31,04 11,65 67,691 29,981 

Lenna 56,05 32,73 30,33 86,372 30,883 

Aerial 56,05 28,29 -18,91 37,134 30,764 

Airfield 56,05 27,41 -28,78 27,259 30,775 

Frisco 56,05 34,59 50,99 107,03 31,099 

Diego 56,05 26,25 -41,62 14,418 30,449 

Mrt_prepared 56,05 32,90 32,218 88,263 30,423 

Variance  9,1895  0,1643 

 

The reasons for improving the method can be explained by the following analysis. 

For the Baboon image in Table 3.7, the ∆QS calculated after the first 

compression/decompression step is equal to -38.21, which is greater than half of the initial 

value and is negative, and result in the highly erroneous PSNRprov (equals to 34,314dB). 

The same situation takes place for another highly textural image Diego (-41,62), for which 

the PSNRprov equals to 35,887dB. Let us come back to the average rate/distortion curve of 

PSNR (Fig. 3.4.a). It can be found that the curves of Baboon and Diego are the farthest 

(bottom) from the average rate/distortion curve, and the farthest above is the curve for the 

Frisco image, which also has highly erroneous PSNRprov=38,495dB. Due to this, ∆QS 

values for these three curves are the largest, where the values for Baboon and Diego are 

negative (marked by red), and the values of Frisco are positive (marked by green). 

In Fig. 3.4.a, it can be seen that when QS is large, all the distortion curves change 

slowly, and the derivatives do not change much, while when QS is small, the derivatives 

of the distortion curve change greatly. Therefore, when ∆QS is negative and its absolute 
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value is greater than QSinit / 2 (negative direction), it is no longer accurate to predict the 

QS by the derivative corresponding to the QSinit, and it is necessary to adopt improved 

solutions, such as for the highly textural test images as Baboon and Diego. If ∆QS is 

greater than QSinit/2 (positive direction), it will not affect the accuracy, such as for image 

Frisco. However, after modification of CCP through the equation (3.3), we finally provide 

a better PSNRprov (see Table 3.7), thereby reducing the error. Six sets of statistical data for 

the metrics PSNR and PSNR-HVS-M are presented in Table 3.8. 

Table 3.8 Statistics for nine test images for ADCTC coder 

Visual quality 

metric 

Mdes VARfis VARsec MAX∆fin 

PSNR 40 4,064 0,268 1,231 

PSNR 35 7,776 0,788 2,368 

PSNR 30 9,189 0,164 1,099 

PSNR-HVS-M 40 0,640 0,013 0,187 

PSNR-HVS-M 35 1,168 0,012 0,336 

PSNR-HVS-M 30 2,217 0,058 0,843 

 

From the analysis of these results, it can be seen that for the metric PSNR-HVS-M, 

the two-step method works well enough, and the variance after the two steps is 

considerable, by approximately one order, smaller than the variance of the first step. 

Meanwhile, the error is also well controlled –its variance does not exceed 0,85 dB2.  

By adopting the modified two-step method for this set of data with PSNRdes=30 dB, 

the variance after two steps is also about one order smaller than the variance after the first 

step of compression. The error is also controlled well, and it does not exceed 2,4 dB. 

Regarding the universality of this method, images outside the image library need to 

be used for verification. For this purpose, twenty highly textured images with different 

types and properties of textures have been selected as a verification test image set [187]. 

Through these 20 images, the applicability of the two-step method to high-texture 

images can be tested, and the error range of the two-step method in practical applications 

can be estimated. In the experiment, three representative visual quality values of 30, 35, 

and 40 dB were used as the desired quality, and six sets of data of PSNR and PSNR-HVS-

M visual quality metrics were obtained. The results are shown in Table 3.9. 
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In this set of statistical data, for two sets of data, we used the modified two-step 

procedure. These are the cases for PSNRdes equal to 30 dB and 35 dB. In both sets of data, 

there were cases when ∆QS was negative, and its absolute value was greater than QSinit / 2. 

Table 3.9 Statistics for texture test images for ADCTC codeer 

Visual quality metric Mdes VARfis VARsec MAX∆fin 

PSNR 40 0,1677 0,1653 1,314 

PSNR 35 1,8509 0,808 2,729 

PSNR 30 5,092 0,1121 1,424 

PSNR-HVS-M 40 7,3716 0,2819 1,502 

PSNR-HVS-M 35 6,3311 0,4281 1,370 

PSNR-HVS-M 30 2,9301 0,738 1,463 

  

It can be concluded from the analysis of statistical data in Table 3.9 that, for ADCTC, 

the two-step method is universally applicable. For three considered values of PSNR-HVS-

M, the procedure works well. The variance of residual errors after two-step compression is 

reduced by about an order of magnitude. For the three considered values of PSNR, the 

effectiveness of the two-step method is proved as well. It is worth noting that when the 

desired PSNR is equal to 40 dB, the variance after the two-step compression practically 

does not change compared to the variance in the first step. If the desired PSNR is equal to 

35 dB or 30 dB, considerable improvement is observed, especially for PSNRdes=30 dB. 

To facilitate detailed analysis, data for this group of test images are given in 

Table3.10. As it can be seen from the analysis of data in Table3.10, accuracy has been 

sufficiently improved – the variance of errors after the two-step compression is about 50 

times smaller than after the first step. For almost all test images (except the test image #3 

and the test image #13), PSNRinit is smaller than PSNRdes. Most ΔQS are negative, and 

their absolute values are larger than QSinit/2 (there are even cases when absolute values of 

ΔQS are larger than QSinit and, then, QSrec (according to (2.14)) occurs to be negative, 

which is impractical. In such cases, expression (3.2) is applied that ensures PSNRprov very 

close to the desired value of PSNR (30 dB). The maximal error is equal to 1.424 dB, and 

this is appropriate in practice.   
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Table 3.10 Statistics and parameters of providing PSNRdes=30 dB for texture images for 

ADCTC coder 

Test Image QSinit PSNRinit ΔQS QSrec PSNRprov 

Test1 56,045 26,328 -40,800 28,023 30,455 

Test2 56,045 25,144 -53,951 28,023 30,0986 

Test3 56,045 30,863 9,590 65,635 30,092 

Test4 56,045 27,247 -30,585 28,023 30,624 

Test5 56,045 24,959 -56,003 28,023 30,2574 

Test6 56,045 24,189 -64,557 28,023 30,2024 

Test7 56,045 24,928 -56,347 28,023 29,9809 

Tes8 56,045 24,539 -60,671 28,023 30,3694 

Test9 56,045 26,728 -36,347 28,023 31,424 

Test10 56,045 25,562 -49,311 28,023 30,354 

Test11 56,045 26,481 -39,101 28,023 30,794 

Test12 56,045 26,158 -42,689 28,023 30,152 

Test13 56,045 32,706 30,066 86,111 30,186 

Test14 56,045 27,803 -24,411 31,634 30,756 

Test15 56,045 25,049 -55,002 28,023 30,427 

Test16 56,045 24,473 -61,401 28,023 30,119 

Test17 56,045 24,329 -63,006 28,023 30,163 

Test18 56,045 25,372 -51,412 28,023 30,502 

Test19 56,045 25,425 -50,825 28,023 30,565 

Test20 56,045 29,140 -9,559 46,486 30,187 

Variance  5,092  0,1121 

 

3.1.3 Two-step providing of desired quality in lossy image compression by SPIHT 

In the previous research work, the Two-step compression method was tested and 

verified on the encoders based on DCT, and the results have shown that this method can 

produce the compression efficiency and accuracy. However, the applicability of this 

method to encoders based on DWT such as JPEG2000 and SPIHT is uncertain and has not 

been studied yet. In this section, the related experiments are carried out for the coder 

SPIHT, which is based on the wavelet transform. Our goal is to analyze whether or not the 

two-step principle is applicable for SPIHT. Another goal is to understand are there any 

peculiarities of providing a desired peak signal-to-noise ratio (PSNR) and other quality 

metrics in this case. Finally, a general feasibility analysis of the two-step compression 

method is performed. 

1) Two-step approach for SPIHT 
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In order to understand the dependence of image quality and compression ratio on 

control parameters, the Goldhill image was used as an example for testing. The 

experimental results are shown in Fig. 3.5. 

For the SPIHT encoder, BPP is used as the control parameter. As can be seen in Fig. 

3.5, as BPP increases, the compression ratio decreases, and the image quality improves. 

CR and BPP are strictly dependent where, for 8-bit representation of grayscale images, 

CR≈8/BPP and, vice versa, BPP≈8/CR. Thus, knowing a desired CR, one calculates BPP, 

and SPIHT provides BPP slightly less than 8/CR. Dependences of quality metrics on BPP 

are monotonously increasing (or non-decreasing) but they are not as smooth as for the 

DCT-based encoders due to specific properties of the SPIHT encoder. 

Figure 3.5 - Dependence of image quality and compression ratio on BPP for SPIHT of 

image Goldhill 

To provide a desired image quality through the two-step method, the average 

rate/distortion curve needs to be obtained first. Here, nine images are used as the image 

library so as to obtain the average distortion curve of a small sample of images. The 

graphs for three visual quality metrics are shown in Fig. 3.6. Among the image library, 

there are four standard images (Lenna, Barbara, Baboon, and Goldhill), four remote 

sensing images, and one medical image, which represent a variety of images that can be 

subject to lossy compression. In particular, there are highly textural images Baboon and 

Diego whilst the test images Frisco and MRT_preparted are quite simple. 

In Fig. 3.6.a, the rate/distortion curve of the PSNR on BPP for each image is 

relatively smooth. For the same BPP value, metric values for different images differ 

greatly (up to 23 dB). The simple image Frisco's curve is at the top, and it has the highest 
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PSNR value under any BPP. The curves for Baboon and Diego images that are complex 

structure images are at the bottom, which means that the distortions are the largest under 

the same CR (BPP). However, the overall change trend is consistent. The average 

distortion curve obtained from these nine images are approximately parallel to other 

curves locally. 

a 
 

b c 

Figure 3.6 – Particular and average distortion curves for SPIHT for the metrics: a) PSNR, 

b) PSNR-HVS, c) PSNR-HVS-M 

In Fig. 3.6.b and 3.6.c, one can observe that, for the same BPP, values of PSNR-HVS 

and PSNR-HVS-M are also sufficiently different. However, for PSNR-HVS-M, this 

difference is smaller than for PSNR, Complex structure images (such as Baboon) have the 

worst visual quality, and correspondingly, simple structure images (such as Frisco) have 

the best visual quality. The average distortion curves are again locally approximately 

parallel to dependences for particular images. 

2) SPIHT-based experiment implementation 

From the previous analysis, it can be concluded that, in SPIHT, it is feasible to 

perform compression prediction through the average distortion curve. In the first step of 

compression, we propose to set the CCP according to the measured average rate/distortion 

curve, the argument of which in SPIHT is BPP. Similar to the methods in other coders[18, 

42, 44, 181],we can calculate the initial BPP value by the following formula: 

𝐵𝑃𝑃𝑖𝑛𝑖𝑡 = 𝐵𝑃𝑃𝑒𝑠𝑡 +
𝑃𝑆𝑁𝑅𝑑𝑒𝑠−𝑃𝑆𝑁𝑅𝑎𝑣𝑒

𝑀′
                                                (3.4) 

After the initial value of BPP is obtained, the image is compressed at the first step 

and then decompressed to obtain the visual quality value corresponding to a considered 

image. 
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In the second step of the compression procedure, a BPP corrected value for this 

image should be calculated using the PSNRinit value obtained at the first step to improve 

accuracy. We propose to do this as follows: 

𝐵𝑃𝑃𝑑𝑒𝑠 = 𝐵𝑃𝑃𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅𝑑𝑒𝑠−𝑃𝑆𝑁𝑅𝑖𝑛𝑖𝑡

𝑀′
                                                 (3.5) 

The corrected (desired) BPP value is used in the second step of compression. After 

the second step of compression, the provided value PSNRprov is closer to the desired value 

PSNRdes than the initial value PSNRinit. However, can the two-step method also provide 

precision control for the compression of other images? Further experiments and statistical 

data are necessary. 

3) Analysis of compression accuracy 

After the average rate/distortion curves based on the three visual evaluation metrics 

are obtained in advance, any image can be compressed by the two-step compression 

method. Taking the desired value of PNSR-HVS-M as 40dB as an example, nine images 

were tested, as shown in Table 3.11. In this Table, we give the following data: BPPinit 

calculated according to (3.4), PSNR-HVS-Minit calculated after compression with BPPinit 

and decompression, ΔBPP calculated as   
𝑃𝑆𝑁𝑅𝑑𝑒𝑠−𝑃𝑆𝑁𝑅𝑖𝑛𝑖𝑡

𝑀′
  in (3.5), BPPdes calculated 

according to (3.5). 

Table3.11- Two-step statistics and paramters of providing PSNR-HVS-Mdes=40dB for 

SPIHT 

Test image BPPinit PSNR-HVSMinit ΔBPP BPPdes PSNR-HVS-Mprov 

Goldhill 1,007 40,215 -0,021 0,986 40,031 

Baboon 1,007 32,688 0,721 1,729 39,186 

Barbara 1,007 40,616 -0,061 0,947 39,912 

Lenna 1,007 44,934 -0,487 0,521 39,762 

Aerial 1,007 36,721 0,323 1,331 40,455 

Airfield 1,007 33,631 0,628 1,636 39,168 

Frisco 1,007 48,944 -0,882 0,504 42,565 

Diego 1,007 33,388 0,652 1,660 39,962 

Mrt_prepared 1,007 48,632 -0,851 0,504 40,316 

Var 40,971 1,013 

 

Before analyzing these data in detail, let us recall the following. There are several 

reasons why the proposed two-step procedure can lead to residual errors in providing a 
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desired value of an employed metric. First of all, linear interpolation is used in (3.5), and it 

is valid only in a certain (not too large) neighborhood of BPPinit and under the condition 

that an approximated function behaves linearly (absolute values of the second and higher 

derivatives are close to zero). Clearly, this is not guaranteed in our case. Secondly, linear 

approximation (3.5) exploits M’ obtained for the average curve as a derivative estimate for 

all particular dependences. Nevertheless, this is also the idealization.      

One can see in Table 3.11 that ǀ∆BPPǀ obtained for Frisco and MRT_prepared images 

after the first compression step is quite large - it exceeds half of the BPPinit value. The 

values obtained after BPP calculation using (3.5) are 0,125 and 0,156, respectively, and 

the PSNR-HVS-M values obtained after such parameter compression are 32,085dB and 

29,186 dB, respectively. So, the accuracy of visual quality provided has not been 

improved after the second step of compression. This is due to the aforementioned factors. 

Really, when BPP is smaller, the curve changes steeper, and the derivative changes more. 

At this time, the BPP is predicted by the derivative of the initial value point, which causes 

ǀ∆BPPǀ to be too large. This means that the expected improvement of providing visual 

quality accuracy cannot be ensured by Equation (3.5) in some cases. Similar situations 

happened for the DCT-based encoders such as AGU and ADCTC [18, 44], controlled by 

the quantization step. For SPIHT, we propose to use similar correction formula for BPPdes 

- if the absolute value of ∆BPP is larger than BPPinit / 2 and ∆BPP is negative, then set 

BPPrec=BPPinit/2,                                                                   (3.6) 

then continue the two-step compression. Due to this modification, the improvement in 

accuracy of providing a desired quality is guaranteed. The experimental data proving this 

are given in Table 3.11. After using the modified formula, the obtained visual quality 

values are 42,565 dB and 40,316 dB (closer to the desired visual quality value). A 

comparison of variance values shows that, after the second step, variance has decreased by 

about 40 times, i.e. the considerable benefit is provided. Meanwhile, a comparison to the 

data for AGU[44]shows that the accuracy of providing a desired PSNR-HVS-M for 

SPIHT is worse (for AGU, the variance of providing PSNR-HVS-M after second step is 

equal to 0,0108).   
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Let us test accuracy for the range of metric values that is the most important in 

practice. Three typical thresholds of 30 dB, 35 dB, and 40 dB for our visual quality 

metrics, PSNR, PSNR-HVS, and PSNR-HVS-M, respectively, have been obtained for 

nine test images of experimental data, which are summarized in Table 3.12. 

Table 3.12-Two-step method statistics for test images for SPIHT 

Quality metric Mdes VARfis VARsec MAX∆fin 
PSNR 40 50,715 4,213 5,950 
PSNR 35 39,577 9,598 7,673 
PSNR 30 29,432 10,82 7,168 

PSNR-HVS 40 45,320 2,175 3,517 
PSNR-HVS 35 37,937 4,603 4,263 
PSNR-HVS 30 31,349 3,599 4,369 

PSNR-HVS-M 40 40,971 1,013 2,565 
PSNR-HVS-M 35 32,867 2,922 3,598 
PSNR-HVS-M 30 26,890 4,028 3,314 

 

It can be seen from the data in this Table that the variance after the first compression 

step is large (up to 50,715dB2), and the variance after the second (correction) step is an 

order of magnitude lower than VARfis (except PSNRdes = 30 dB). The higher the desired 

visual quality, the smaller the error. In addition, through comparison, it can be concluded 

that the two-step method works better with employing the HVS-based visual quality 

metrics, and the maximum error does not exceed 5 dB. In the evaluation based on PSNR, 

the variance is improved, but the maximum error is still large, and more effective 

improvements are needed to reduce the error. 

3.2 Modification in curve model 

The problem of "over-correction" can be avoided by adding constraints in the 

parameter correction process after the preliminary step compression so as to ensure that 

the parameter correction has a positive effect on the reduction of errors. However, this 

simple constraint has a limited effect on improving the accuracy, and the effect is related 

to the image itself. In this section, we propose a simple pre-classification of images, using 

an adapted average distortion rate/distortion curve according to the image complexity. 

Through optimization of this curve model, better visual quality accuracy can be provided 

in AGU and SPIHT encoders. 
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3.2.1 Adaptive two-step procedure of providing desired visual quality of compressed 

image 

 

Through extensive experiments on this method, the results prove that this method is 

not only suitable for AGU coder, but also for other DCT-based encoders, such as ADCT 

coder[18]. The test results on SPIHT show that this method is also suitable for DWT-

based encoders[45]. However, with the in-depth study of the two-step method, we have 

also found the shortcomings of the method. The two-step method can provide satisfactory 

HVS-based visual quality metric accuracy, but when the expected PSNR value is low (less 

than 35 dB), the visual quality and expected value of some images after 

compression/decompression have a large deviation. This situation exists in the 

experiments of all three codes used in the tests. In response to this problem, this paper 

analyzes and proposes an improved method to increase the accuracy provided by the two-

step method when the desired value of PSNR is low. 

1）PSNR dependence analysis 

In [42, 44, 181], we have studied the dependence of PSNR on QS, and there is a 

common trend in general, but for each certain QS value, PSNR for different images varies 

greatly. In addition to QS, what are other factors that determine PSNR for a particular 

image and a given QS? Let us try to answer this question.  

Some researchers have proposed compression performance prediction for different 

types of images, such as facial images [188], remote sensing images [189], etc. Of course, 

different types of images have different characteristics in texture. However, through 

comparative experiments with different image data sets, it has been found that the 

complexity of an image plays an important role in determining PSNR and other quality 

metrics. Fig.3.7.a and Fig.3.7.b show two average rate-distortion curves, respectively, are 

PSNR, and PSNR-HVS-M.  
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a 
 

b 

Figure 3.7 - Average metrics curve for AGU, a) texture images, b) nine general images 

Figures 3.7 contain plots drawn from two sets of test images. The first set includes 

aforementioned nine test images (see [42]for more details), and the second set contains 

thirty texture images (see [44] for more details). It can be seen from the comparison of the 

plots in these two Figures that average PSNR-HVS-M values for the same QS differ by up 

to 2,5 dB. Meanwhile, the difference for PSNR is larger. For example, for QS=30, we 

have a mean PSNR of about 31 dB for the first set (texture images, Fig. 3.7.a) and about 

34 dB for the second set (Fig. 3.7.b). Thus, the average rate-distortion curve of PSNR on 

QS can sufficiently depend on the choice of the image set. Recall here that M’ in (2.14) is 

determined from the average dependence. Then, the difference in M’ for a given image to 

be compressed and M’ used in (2.14) can influence the accuracy of proving a desired 

quality.   

Therefore, if the two-step procedure is applied to produce a desired PSNR-HVS-M, 

accuracy is high. At the same time, when it is desired to provide a given PSNR and this 

PSNR is low, accuracy can be unsatisfactory (see also data in [44]). It can be seen that 

even by increasing the number of test images to obtain some new average rate-distortion 

curve for PSNR, the improvement in accuracy cannot be reached because of the essential 

difference of dependences of PSNR on QS for different images.  

An alternative way we propose to have more than one average rate-distortion curve 

suitable for images with different properties and to carry out some simple preliminary 

“classification” for each image to be compressed by referring it to two or more groups 

(classes). Such a classification should, in the simplest case, divide images into simple and 
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complex structures ones. Note that “classification” should be very fast so as not to lose the 

advantages of two-step compression.  

2) Image complexity classification 

Recall [42, 44, 181]that we are mostly interested in providing PSNR from about 30 

dB to about 35 dB.  Just for this interval, the accuracy of providing a desired quality 

according to PSNR can be inappropriate. Meanwhile, this is the main operation interval of 

lossy compression since PSNR≥35 dB corresponds to practically invisible distortions 

whilst PSNR≤30 dB relates to distortions that can be annoying. It follows from the 

analysis of the plots in Figures 3.7 that the aforementioned interval approximately 

corresponds to QS values from 15 to 50.  

The simplest classification or discrimination procedures, if there are only two classes, 

are usually threshold ones, i.e., a considered parameter is compared to a threshold, and 

based on this comparison, a decision is undertaken. In such a case, obviously, one needs to 

find (or choose) a good input parameter and a proper threshold. For this purpose, let us, for 

the beginning, suppose that a simpler structure image, on the average, has a larger PSNR 

for a given QS (in other words, we suppose that an image has a simpler structure if it has a 

larger PSNR (and CR) for a given QS. Then, we need an input parameter that has a high 

correlation with PSNR. Strictly saying, it is not necessary to have a high Pearson 

correlation. It can be enough to have a high Spearman or Kendall correlation [190]. To 

carry out such an analysis, we have calculated the following parameters: CR, PSNR40, 

PSNR35, PSNR30, PSNRHVSM40, PSNRHVSM35, PSNRHVSM30. Here CR denotes 

the compression ratio for a lossless compression technique, namely, zip. An assumption is 

that since such a CR is determined by the information redundancy of an image, it can be 

connected with image quality when compression is lossy. In addition, we have analyzed 

six parameters that characterize compressed images for particular situations when the 

quantization step is set to 40, 35, and 30, respectively. 

Considering the test images, nine general images and thirty-nine texture images have 

been adopted as the complete image set, and we have calculated all three correlation 

factors for all possible pairs of them. Fig.3.8.a and Fig.3.8.b, Fig.3.8.c are three correlation 

heat maps for Pearson, Spearman, and Kendall correlation. It can be seen that:  
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a b c 

Figure 3.8 – Correlation coefficient heat map for seven parameters, a) Pearson; b) 

Spearman; c) Kendall 

1) There is a certain correlation between CR and other parameters, but it is low. This 

means that CR provided by ZIP cannot be used for the characterization of image 

complexity (for the considered case). 

2) The correlation coefficient between the same visual evaluation metrics for three 

values of QS is very high; it is above 0,97, which can be considered as highly correlated; 

this means in practice that if PSNR for QS=20 for one image is larger than for another 

image, it is very probable that the same holds for QS=30 and 40; in other words, the 

dependences PSNR on QS for different images intersect very rarely; this also means that if 

a given image belongs to a certain class for, e.g., QS=20, it belongs to the same class for 

other values of QS.    

3) The same holds for PSNRHVSM40, PSNRHVSM35, PSNRHVSM30, although 

the correlation between PSNRHVSM40 and PSNRHVSM30 is slightly smaller than 

between PSNRHVSM40 and PSNRHVSM35. 

4) There is also a certain correlation between PSNR and PSNR-HVS-M, but the 

correlation coefficients are all negative. It shows that the increase of one parameter may 

cause the decrease of another parameter.  

5) The coefficient correlation between PSNR and CR is higher than the correlation 

between PSNR-HVS-M and CR. 

Therefore, to improve the accuracy of the two-step method, a simple complexity 

classification of the image before pre-compression is a feasible way. Actually, PSNR itself 

has a certain correlation with CR, but this correlation is too low to rely on. On the contrary, 

PSNR for certain QS can be used to represent the image complexity to classify images. 
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For a specific QS value, a high PSNR indicates a low complexity of the image and vice 

versa. 

a b 

Figure 3.9 – PSNR histograms for AGU coder, a) QS=20, b) QS=30 

In order to obtain the PSNR classification threshold and further analyze the previous 

results, experiments have been conducted on thirty-nine images. When QS is 20 and 30, 

respectively, the histograms of PSNR have been obtained and plotted in Fig.3.9.a and 

Fig.3.9.b. From the analysis of the plots in these two Figures, we can conclude that there is 

a common feature in the plots. A threshold is easy to find – it is approximately equal to 33 

dB for data in Fig.3.9.b (for most textural images, PSNR is smaller than 33 dB). So, it can 

be considered that when QS=30, images with PSNR>33 dB are treated as simple ones, 

while images with PSNR≤33 dB have higher complexity. According to this threshold, 

eight out of thirty-nine images are simple images, and thirty-one are complex images. 

 

Figure 3.10 – PSNR average curves (simple & complex sets) 

In Fig.3.10, two average rate-distortion curves are drawn for these two types of 

images. It can be seen from this Figure that the PSNR of simple images is higher than that 
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of complex images. When the desired quality PSNR is 30 dB, the initial QS value set 

according to the average rate-distortion curve in Fig. 3.7.b is about 60, and the 

corresponding derivative is also quite different. This leads to considerable errors in QS 

determination using (2.14) [42]. After the proposed subdivision of images into two groups, 

the error can be expected to reduce, and the accuracy can be better improved. 

3) Proposed adaptive two-step method 

According to the above analysis, to improve the accuracy of the two-step method, it 

is necessary to perform a PSNR30 calculation or prediction for an image to be compressed 

before determining the image complexity. In the compression prediction method for the 

AGU encoder [191], only a certain number of image blocks needs to be extracted for data 

processing to predict the PSNR30 value. Because no compression/decompression is 

involved, this operation does not considerably increase the time of overall two-step 

compression, and the proposed preliminary analysis can be performed quickly with 

satisfactory accuracy. The specific implementation method is as follows in Fig.3.11. 

 

Figure 3.11 - Block diagram of adaptive two-step method for AGU 

In this Section, thirty-nine images (nine general-purpose images and thirty texture 

images) have been divided into two groups according to the PSNR prediction results using 

PSNR30 and 33 dB as the threshold. Eight images belong to the simple set, and thirty-one 

belong to the complex set. Average rate-distortion curves for the two image sets have been 

obtained off-line, respectively (Fig. 3.10). The adaptive two-step method has been realized 

according to the flowchart in Fig.3.11. 

1) The prediction program [191] is used to predict the PSNR30 of an image to be 

compressed and determine is it a simple image or a complex image. The experimental 

results prove that the classification effect can be achieved by selecting three hundred 8x8 

image blocks, and the time efficiency can be guaranteed. 

prediction of PSNR 
on test image

adaptive average 
rate/distortion 

curve paraments
Two-step method 
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2) Based on the average rate-distortion curve corresponding to the determined image 

complexity, the initial QS value of the test image and the derivative of the average rate-

distortion curve are adaptively set. 

3) Calculate the initial QS value according to equation (3.1), and perform the first 

step of compression. After the PSNR feedback is obtained, the QS value is corrected 

according to equation (2.14), and the second step of compression is performed to provide a 

desired visual quality. 

From the perspective of the overall implementation process of the adaptive two-step 

method, the improvement is mainly in two aspects: 1) First, when the average rate-

distortion curves are obtained offline, the simple classification is first carried out 

according to the image complexity, the average rate-distortion curve of the simple image 

set and the average rate-distortion curve of complex image set are obtained. Because this 

process is done offline, it does not affect the time efficiency of the two-step method; 2) 

Secondly, the appropriate average rate-distortion curve is chosen.  

4) Experimental results and analysis 

The results of this method have to be verified. First, an experiment was performed on 

39 images [18, 44] through the two average distortion curves in Fig.3.10. The 

experimental statistical results are shown in Table 3.12. 

Table 3.12. PSNR statistical results of simple and complex images for image set 

Image set PSNRdes VARfis VARsec MAXΔfinal 

Simple test image set 

 

40 3,028 

 

0,113 0,863 

35 3,1301 0,1413 1,062 

30 2,9887 0,2009 0,881 

Complex test image set 

40 0,0484 8,35E-04 0,133 

35 0,186 0,0017 0,159 

30 0,5904 0,0137 0,433 

 

It can be seen from the statistical data in Table 3.12 that using the improved two-step 

method of predictive adaptation, the variance in the second step is one order of magnitude 

lower than that in the first step (almost two orders of magnitude in complex image sets). 

The QS in the second step is corrected more accurately, which can provide higher 
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accuracy. At the same time, the maximum deviation of the complex image set is obviously 

smaller than the maximum deviation of the simple image set. It can be concluded from 

these two indicators (variance and maximum deviation) that the adaptive two-step 

compression method can better ensure the compression quality accuracy of both simple 

and complex images. The maximal deviation of the provided PSNR with respect to the 

desired one is about 1 dB or less which is acceptable for practice.  

Airplane APC Boat Bridge Car_APCs  Couple 

Ruler Tank Test31 Test32 Test33 Test34 

Test35 Test36 Test37 Test38 Test39 Test40 

 

Test41 Test42 Truck Truck_APCs 

 

Figure 3.12 - test images set for adaptive two-step method for AGU coder 

In order to better test the adaptive two-step method, the experiment first performed 

for thirty-nine image sets has also been done for the other 22 images shown in Fig.3.12. It 

contains general natural images, character images, drone aerial images, and texture images. 

Please note that “super-simple” images are also included here so that through experiments, 

we can learn whether this method is also applicable in extreme situations. 

The experimental data statistics based on images in Fig.3.12 are shown in Table 3.13. 

According to the PSNR30 prediction result and the threshold of 33 dB in Fig.3.9, 22 
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images are divided into two groups, of which 11 images are simple images, and the other 

11 images are complex images. 

It can be seen from the statistical results that the adaptive two-step method normally 

works for this test image set. The variance of the second step is about an order of 

magnitude lower than the variance of the first step, and the data tends to converge. The 

effect in complex images is better than in simple images. The maximum error in complex 

images is 2,196 dB, while the maximum error in simple images is 4,063 dB (existing in 

extreme cases). Compared with the results in [42, 44, 181], the accuracy has been 

improved. 

Table 3.13 - PSNR statistical results of simple and complex images for the AGU coder for 

22 test images 

Image set PSNRdes VARfis VARsec MAXΔfinal 

Simple test image set 

 

40 29,1022 1,4357 4,063 

35 18,076 1,7359 3,56 

30 9,1728 0,631 1,492 

Complex test image set 

40 0,0848 0,0006 0,053 

35 0,2344 0,0033 0,21 

30 1,3415 0,4693 2,196 

Table 3.14 - Statistics and parameters of providing PSNRdes=35 dB for the AGU coder 

(simple images) 

Test image QSinit PSNRinit ΔQS QSrec PSNRprov 

Airplane 32,37 36,545 9,751 42,120 35,557 

APC 32,37 33,545 -9,184 23,185 34,908 

Boat 32,37 33,389 -10,170 22,199 35,199 

Car_APCs 32,37 33,572 -9,015 23,354 34,999 

Couple 32,37 33,965 -6,534 25,835 35,202 

Ruler 32,37 38,433 21,670 54,039 31,444 

Truck 32,37 33,180 -11,493 20,876 35,355 

test34 32,37 33,381 -10,222 22,147 35,014 

test37 32,37 34,670 -2,082 30,287 34,825 

test40 32,37 47,393 78,236 110,605 37,003 

test42 32,37 38,301 20,838 53,207 35,384 

Variance 18,076 1,7359 
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In order to understand the composition of the experimental data, the experimental 

data for PSNRdes=35 dB are presented in Table3.14. It can be found that the data accuracy 

for nine images is satisfactory, and the data of two images have become the main factors 

for the large variance of the statistical data in the first compression study, namely Ruler 

and test40. For example, for the image test40, the PSNR value in the first compression 

step is as high as 47,393 dB. According to the image complexity classification rule in our 

study, this value indicates that the complexity of the image is extremely low and can be 

considered a super-simple image. Even so, after the second step of compression, the PSNR 

value is 37,003 dB, indicating that the selected average distortion curve parameter 

effectively corrects the QS value. The variance in the second step has also decreased from 

18,076 to 1,7359. A similar situation also occurs when the PSNRdes is 40 dB. 

In summary, the adaptive two-step compression method has improved its accuracy 

satisfactorily after introducing complexity prediction. The experimental results also show 

that the method is robust and can still work even in extreme conditions. 

 

3.2.2 Adaptive two-step method for providing the desired visual quality for SPIHT 

 

Our previous works have proved that this method works well for the DCT-based 

coder AGU and HEVC-based coder BPG[42-44], and its adaptive version reduces the 

errors for the metric PSNR [46]. However, the accuracy of providing a desired quality for 

the DWT-based coder SPIHT is sometimes insufficient [45].In this section, our goal is to 

develop an adaptive two-step method for SPIHT to improve accuracy. The following tasks 

were solved. First, a prediction of visual quality for a particular parameter value is 

conducted. The prediction scheme is based on the information extraction from a certain 

number of image blocks to perform a visual quality calculation of the image compressed 

for a given CCP value. A threshold is adopted as the complexity grouping; images are 

divided into two groups: simple and complex images. Second, the results of the grouping 

determine the adaptive curve model adopted. Finally, a two-step compression method is 

applied according to this curve. 

1) Analysis of two-step method on SPIHT 
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In our previous studies, the result of applying the two-step method to SPIHT has 

occurred considerably less optimistic than for the DCT-based coder AGU [42, 45]. In 

particular, the largest residual errors of providing a desired metric value took place for 

simple structure images and/or low desired quality. The reason is that these images’ rate-

distortion curves differ a lot from the average one, which led to the inappropriate initial 

CCP and erroneous estimate of derivative used in the calculation of the corrected CCP. 

A part of the average rate-distortion curve is given in Fig 3.13. Two examples of 

particular rate/distortion curves are also presented for comparison and detailed analysis. 

The curve for the test image Goldhill is very similar to the average one; therefore, the 

accuracy of quality provided by the conventional two-step method for this test image is 

high, and the residual error is appropriate [45]. However, for the simple structure image 

Frisco (that contains large quasi-homogeneous regions), the rate/distortion curve differs a 

lot from the average curve. This results in the residual error that is the largest among the 

test images considered in [45]. Therefore, the accuracy is worth improving, especially for 

simple structure images and low desired PSNR. The two-step compression method [45] 

requires the simultaneous fast realization of both fast discrete wavelet and cosine 

transforms. 

Figure 3.13 – comparison of average curve and example image curves of PSNR on BPP 

for SPIHT 

2) Adaptive two-step method on SPIHT 

Aiming at the problem that the difference in image complexity results in the 

mismatch of the average rate-distortion curve, an adaptive method was proposed for AGU 

[46]. Because of its effective improvement, and thanks to the image quality prediction 
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method proposed recently [41], it is possible to apply an adaptive two-step method to 

SPIHT. 

The main idea consists of as follows. We assume that it is possible to easily, reliably, 

and quickly pre-classify an image to be compressed and refer it to two (or even more) 

classes (categories). Having average rate/distortion curves for all classes and assuming that 

particular rate/distortion curves for images of a given class are close to the corresponding 

average rate/distortion curve, it is possible to set the initial (first step) CCP better and to 

use a better estimate of derivative in the second step.   

In this section, we have limited ourselves by considering two classes. The average 

rate-distortion curves were obtained from two basic image sets. In this paper, all basic 

images were divided into simple and complex groups. The grouping was based on the 

image quality prediction value for a fixed CCP, bit per pixel (BPP) in the SPIHT coder [41, 

46].  

The prediction approach for the SPIHT coder proposed in [41] provides an estimated 

value of PSNR for a given BPP using some calculation to replace the actual compression.  

The time consumption is about 2/3 of SPIHT compression, and the standard deviation of 

residual errors of providing a desired PSNR is about a few dB. 

In our adaptive method, the predicted value (2.5) is utilized to pre-classify an image 

to be compressed into two groups, simple and complex structures. The BPP is given as 0.5, 

300 8×8 random image blocks are chosen to calculate the prediction PSNR (2.5). The 

basic image set prediction results are shown in Figure 3.14. 

 

Figure 3.14 – Prediction of PSNR for SPIHT(BPP=0.5) 
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Let us set the PSNR=30 dB as the threshold (Horizontal dotted line in Fig. 3); if the 

predicted PSNR is larger than 30 dB, then the image is treated as the simple one (marked 

as a red dot). Otherwise, it belongs to the complex image set (marked as a black square).  

As shown in Fig. 3.14, most images belong to the class of “complex structure images.” 

Only 7 out of 39 test images have been classified as simple structure ones. The average 

curves drawn from images of the two classes are shown in Figure 3.15. It can be seen from 

the analysis of these curves that the average values for simple images are considerably (by 

10-15 dB) higher than for the complex ones due to different image complexity. 

 

 

 

 

 

 

 

Figure 3.15 – Grouped dependence of PSNR on BPP for SPIHT 

The proposed pre-classification approach is performed for each image to be 

compressed. The considered image is automatically classified as simple or complex 

images; the average curve is chosen adaptively; the two-step method is implemented 

according to the equations (3.4) and (3.5). 

3) Validation experiment 

The validation experiment has been conducted in three stages to verify its feasibility. 

First, thirty-nine gray-scale images [187, 192] were chosen as the basic image set, 

including nine general-purpose images and thirty texture images. This image set was 

divided into two groups, and then serial experiments were conducted for each image and a 

wide range of BPP values; Finally, the average rate-distortion curves (see Fig 3.15) were 

obtained. 

Second, twenty images [187, 192] have been chosen as the test image set to conduct 

the validation experiment with curve models from the basic image set. These test images 
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have also been split into two groups with the same prediction and classification strategy 

used in the basic image set.  

Finally, an adaptive two-step method validation experiment has been implemented 

for two groups of images. Three typical values have been chosen for the metric PSNR, and 

the results are presented in the next section. For comparison, the results for the previous 

two-step method [45] for these test images have been obtained as well. 

4) Result and discussion 

The experiment results are presented to compare the previous two-step method and 

adaptive method for the SPIHT coder. The result of the previous method is shown in Table 

3.15, and the result of the adaptive method is shown in Table 3.16, where the experiment 

was conducted for simple images and complex ones separately, but the data were 

combined in one table to facilitate comparison. 

Table 3.15 Statistic result of basic method on test images for PSNR (dB) 

PSNRdes VARfis VARsec MAXΔfinal MAE 

40 37,6386 1,9183 5,9907 0,5049 

35 41,831 5,4447 5,5956 1,5911 

30 48,7648 13,5432 7,9147 2,5726 

Table 3. 16 Statistic result of adaptive method on test images for PSNR (dB) 

PSNRdes VARfis VARsec MAXΔfinal MAE 

40 22,2946 2,4362 5,81 0,8618 

35 24,4809 5,2552 4,7989 1,7228 

30 32,9900 2,0219 5,378 0,7799 
 

From these data comparisons, it is proved that the adaptive scheme improves the 

overall accuracy of the two-step method for SPIHT lossy compression. First, the variances 

in the first step compression have been reduced sufficiently with the better initial CCP; 

second, the residual errors of visual quality providing are smaller and more convergent due 

to the adaptive selection of the average rate-distortion curve, which is more significant at a 

low desired quality (30 dB). 

For a detailed analysis of the adaptive method on remote sensing images [193], one 

example is shown in Fig 3.16. The example image was compressed for the desired quality 

equal to 40 dB, 35 dB, and 30 dB. The original image and decompressed image with small 
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CR are presented in Figure 3.16.a and 3.16.b, respectively. The image in Figure 3.16.b has 

an excellent quality, which is indistinguishable from the original image. The image in 

Figure 3.16.c has a good quality, and the distortion is not easy to notice; the image in 

Figure 3.16.d has relatively bad quality, but it allows to understand the content of the 

image in spite of distortions that are mainly concentrated in texture/detail areas; 

meanwhile, the high compression ratio (CR) is achieved. The example also shows that the 

largest residual error is observed for PSNRdes = 30 dB. 

a b 

c d 

Figure 3.16 - Remote sensing image example, a) original images, b) PSNRpro=40,708, 

CR=4,086, c) PSNRpro= 33,944, CR= 7,160, d) PSNRpro= 27,098, CR= 19,112 
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It is demonstrated that the proposed adaptive method for two-step compression is 

able to provide the desired quality for the SPIHT coder. The user can set a proper desired 

value according to requirements for a given application and achieve the highest CR. 

 

3.2.3 Intelligent lossy compression method of providing a desired visual quality for 

images of different complexity 

 

The research work in the previous section shows that for the two-step compression 

method in the case of unsatisfactory accuracy in the compression of some images in AGU, 

it is possible to carry out a simple classification of images before their lossy 

compression[46] and use different average curves for different groups of images. This 

partly helps, but there can be “strange” (super-simple) images. Besides, it is desired to 

carry out preliminary classification faster and more reliably.   

In this section, we show that image classification can be done on the basis of entropy 

calculation and its comparison to a set of thresholds. This allows fast detection of “strange” 

images and division of other images into three groups (simple, middle, and high 

complexity). This results in better (more accurate) providing of the desired PSNR in the 

range where introduced distortions are visible.     

1) Entropy-based fast classification of image complexity 

Aiming to improve the accuracy of the two-step method of lossy compression, the 

complexity of images was introduced in [46]. Consequently, an alternative approach 

proposed was to divide images into simple and complex structures ones and have two 

average rate-distortion curves, respectively. The classification strategy in [46] was either 

to predict the PSNR value of an image set for some QS value(s) or to calculate CR for 

lossless compression (CRlossless). It was supposed that these parameters being compared to 

thresholds are able to classify images. This approach partly helps to improve the accuracy, 

but the prediction of PSNR is still not fast as we desired. Another problem is that the 

extreme images are difficult to point out, which has a strange performance for the two-step 

method.  
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In this section, we propose a new approach to solve the problems mentioned above. 

Our idea is based on the assumption that the entropy is able to characterize the image 

complexity. In fact, entropy has been used to determine the complexity of images to detect 

defects on 3D printed surfaces [194]. The entropy data have been obtained for our image 

set (including 61 gray-scale images of the size of 512×512 pixels) to verify the theoretical 

feasibility. The result is shown in Fig 3.17. 

For 61 images, entropy varies from 0,5 to 7,9, along with CRlossless varying from 

100.7 to 1. The correlation coefficients for these two indicators of image complexity are -

0,74 for Pearson, -0,88 for Spearman, and -0,76 for Kendall, respectively. The larger 

CRlossless corresponds to simpler images; meanwhile, the entropy value is smaller, and vice 

versa. It is easy to roughly divide the images set into three levels according to the entropy 

of an image: 1) complex image if entropy >7; 2) middle complexity image if 6<entropy≤

7; 3) simple complexity image if entropy<6.  

Figure 3.17 – Entropy values for 61 gray-scale images 

Let us take three images as examples, corresponding to three levels of complexity. 

The first one is the remote sense image Frisco (see Fig.2.14), which has a large uniform 

area as the background, and it belongs to the simple image set according to entropy 

(5,8166). The second one is a texture image (numbered as #12 in Fig. 3.3), which has 

strong texture information, and it belongs to the middle complexity image set since its 

entropy equals 6,799. The last one is the image Baboon (see Fig. 2.14) with the entropy 

equal to 7,3579, which is a typical complex image for its rich texture information and 
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complex composition. The comparison of the three images proves that our classification 

strategy roughly corresponds to the complexity of the image. 

Similarly to[46], the average rate-distortion curves have been obtained for three-level 

basic image sets, 4 images in the simple image set, 15 images in the middle complexity 

image set, and 17 images in the complex image set. These curves are shown in Figure 3.18; 

the curves of three example images are also present in the corresponding plots. Three 

average curves have the trend in common, PSNR decreases monotonically along with QS 

increasing, and the average curves are approximate “locally parallel” to other curves of the 

corresponding complexity images, but the curvature deviations of different images sets are 

different.  Among them, the images in the simple image set have the largest diversity 

compared to the other two sets. 

a b c 

Figure 3.18 - Dependence of PSNR on QS, (a) simple images; (b) middle complexity 

images; (c) complex images 

According to the two-step method, these curves are the most important data for 

calculating QS values for the first and second steps of compression for providing a desired 

visual quality. First, the estimated QS (QSest) value is obtained from one point on the 

average rate-distortion curve (chosen according to the entropy of an image being 

compressed), where PSNR is the closest to the desired value PSNRdes. Subsequently, 

equation (3.1) is employed to calculate the initial QS(QSinit) used in the first step 

compression. Then decompress and calculate the visual quality of decompressed image 

with respect to the original image. This initial PSNR (PSNRinit) is usually quite close to 

PSNRdes, but it can be not close enough to meet the requirement of a user; therefore, the 

second step is needed to reduce the error. The QS is corrected by equation (2.14) using 

PSNRinit. The second step is conducted with the corrected QS(QSdes) and produces a 

compressed image file, which provides a PSNR (PSNRpro) closer to PSNRdes than PSNRinit. 
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2) Results and discussion 

Test experiments were carried out on 61 images (including 36 basic images), and 

statistical results are shown in Table 3.17, where three PSNR values (40, 35, and 30dB) 

were selected as the desired quality. The result proves that the second step compression 

has effectively reduced the error; the variance of PSNRpro does not exceed 1,5 dB2. 

Compared to the basic two-step method, the accuracy has been, in general, improved by 

our new approach with entropy classification. However, there is still some detailed 

information that needs to be noted. The errors in the simple image set are larger than in the 

other two sets, and the largest error in it occurs in the desired PSNR equal to 40dB, while 

in the other two sets, the largest error occurs in the lowest desired PSNR (as it was in our 

works [42, 44, 46]).  

Table 3.17 -Statistical results of two-step compression method based on entropy  

Image set PSNRdes VARfis VARsec MAXΔfinal 

Simple test image set 

40 26,1129 1,4352 4,4539 

35 20,153 1,4246 2,8279 

30 15,2624 1,1545 1,9385 

Medium test image set 

40 0,1583 0,0033 0,2394 

35 0,6986 0,486 0,8277 

30 2,4614 0,4111 1,907 

Complex test image set 

40 

35 

30 

0,3173 0,0238 0,5398 

35 1,3866 0,1221 1,4162 

30 3,6813 0,3083 2,4022 

 

The problems with the simple image set are due to three “strange” images presented 

in Fig 3.19. They are images Ruler (entropy=0,5), Texture #40 (entropy=2,9994), and 

Texture #42 (entropy=2,9833), their dependences of PSNR on QS are given in Fig 3.15. 

As one can see, these are artificially created images with a limited number of value levels 

(specific histograms of image values). Rate-distortion curves for them might not be 

monotonous or differ a lot from the average curve. This causes problems in using the 

expressions (3.1) and (2.14) in providing the desired quality. Then, a preliminary 

calculation of entropy can show in practice that one deals with a “strange” image (if 

entropy is smaller than 3, “be careful”). 
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Figure 3.19 - Rate-distortion curves for three special (“strange”) images 

 

3.3 Hybrid method of correction scheme of CCP in second step 

 

After the exploration of methods such as adding correction constraints [44]and 

classifying according to the complexity of the image[46, 47], the two-step compression 

method has improved the visual quality control accuracy of the AGU encoder to a certain 

extent. In this subsection, we propose a hybrid correction method further to improve the 

control accuracy of the two-step compression method. The current work differs from the 

previous work in several ways. The main contributions of our modifications are the 

following: 

1) previous two-step method has used a general image set to obtain the average rate-

distortion curve and employed it to determine the initial PCC at the first step [42]. 

However, this curve cannot fit all kinds of images well; this leads to errors at the first step 

that is difficult to control. Here, we obtain the average rate-distortion curve from a 

particular category image set and use it in the corresponding category of images, for 

example, remote sensing images. This improvement reduces the error in the first step 

compression; 

2) the previous two-step method as used the approximate derivative to correct the 

PCC in the second step; this approach works well if the error is small. However, the 

limitations on the possibility to apply linear interpolation arise if the error is relatively 

large; then, the correction at the second step occurs unable to provide the desired visual 
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quality sometimes [44].  It is needed to simulate the image rate-distortion curve in a better 

way, then predict a more precise PCC to meet the desired visual quality. We take the 

deviation tangent in average rate-distortion to simulate the objective image rate-distortion 

in the case of a large error that takes place in the first compression. This supplementary 

measure can produce a more accurate PCC for the second step compression and, 

eventually, improve the accuracy of providing the desired visual quality.  

1) Two-step method on AGU for remote sensing images 

In [42], typical nine grayscale optical test images have been chosen as the basic 

images set to obtain the average rate-distortion curve. This image set includes the images 

from the Kodak set, and remote sensing images, medical images. The purpose was to 

represent the universality of compressed images. Three metrics were employed, namely, 

PSNR, PSNR-HVS, and PSNR-HVS-M. Three typical values are used in the testing 

experiment in terms of three metrics.  

Figure 3.20 – gray-scale remote sensing image set for AGU coder 

Image #1 Image #2 Image #3 

Image #4 Image #5 Image #6 

Image #7 Image #8 Image #9 
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The application of the standard two-step method [42] is thus restricted. Due to 

modification (3.2), the variance has been reduced by one order, and the maximum error 

has not exceeded 1.58 dB. Meanwhile, errors less than 1 dB are desired. 

This section studies remote sensing images, which are mostly high-textured images. 

They often contain several objects, and every object has a semantic meaning. Visual 

quality plays an important role in classification, target detection, and solving other typical 

remote sensing image processing tasks. 

An experiment has been carried out for remote sensing set with the general average 

rate-distortion curve (the curve is obtained in [42]). The image set and image titles are 

shown in Fig. 3.20. In order to analyze the performance of the two-step method for RS 

images, the same three typical metric values are tested, respectively, 40dB, 35dB, and 

30dB. Classical visual quality metric PSNR and HVS-based metric PSNR-HVS-M are 

employed to evaluate the visual quality of images after compression/decompression, and 

the statistical results are shown in Table 3.18. 

Table 3.18 - Statistical results of conventional method for remote sensing images 

Visual quality metric Mdes VARfri VARsec MAX∆final 

PSNR 40 0,686 0,153 1,214 

PSNR 35 2,572 0,273 1,406 

PSNR 30 5,535 0,693 1,951 

PSNR-HVS-M 40 0,870 0,025 0,317 

PSNR-HVS-M 35 0,457 0,081 0,63 

PSNR-HVS-M 30 1,015 0,071 0,485 

 

In Table 3.18, the variance after compression in the second step is about 1/5 to 1/30 

of the one in the first step. The error for PSNR does not exceed 1,95 dB, and the error for 

PSNR-HVS-M does not exceed 0,63dB. This result proves that the two-step method works 

well for remote sensing images, but the accuracy can be not sufficient enough, in 

particular, for PSNRdes=30 dB. Consequently, this method is worth modifying to improve 

its accuracy. Besides, it is desired to reduce the time consumption in a simple way to save 

computing resources.  

2）Modified scheme of two-step method 
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In light of the shortcomings of the two-step method, we need some ways to meet the 

requirements of remote sensing image compression. Below we propose a modified scheme 

of the two-step method to improve the accuracy further and reduce the time consumption 

to a certain degree. 

Our current work employs modifications in two aspects. First, for remote sensing 

images, we obtain the average rate-distortion curve using only remote sensing images. It is 

supposed that such a curve fits better the remote sensing images. Second, the two methods 

are used to correct the QS value in the second step, and the chosen strategy relates to the 

size of deviation in the first step. 

a. Particular average rate-distortion 

In this section, we choose one group of remote sensing images as the basic image set 

to obtain the particular average rate-distortion curve for the remote sensing data. 

Image #10 Image #11 Image #12 

Image #13 Image #14 Image #15 

Image #16 Image #17 Image #18 

Figure 3.21 – gray-scale remote sensing basic image set for AGU coder 
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The basic image set and the image titles are shown in Fig.3.21. It includes nine gray-

scale images of the size of 512×512 pixels, and the same interval of QS as in our previous 

work [42] is adopted in the original data while experiments are conducted to obtain the 

average rate-distortion curve. The remote sensing average rate-distortion curve is 

presented as PSNRR and PSNR-HVS-MR in Fig.3.22. For comparison, the previous 

general average rate-distortion curves from[42]are also presented as PSNRG and PSNR-

HVS-MG in this plot.  

It can be seen from Fig.3.22 that the remote sensing image average rate-distortion 

curves are similar to the earlier obtained (general) ones; in some areas, the curves almost 

coincide. But there are still some differences in other areas. For the metric PSNR, this 

range of difference is about from 45dB to 30dB; for the metric PSNR-HVS-M, it is about 

from 30dB to 23dB. This is the reason why the two-step method performs on PSNR-HVS-

M better than on PSNR for the typical three values (40 dB, 35 dB, 30 dB) in our previous 

experiments. If we want to improve the accuracy of the two-step method, then the 

particular average rate-distortion curve needs to be adopted for remote sensing images. It 

can be expected that a better initial QS can be calculated according to the particular 

average rate-distortion curve. 

Figure 3.22 - Metrics dependence on QS for AGU 

b. Hybrid correction method for QS 

In the conventional two-step method[42], the correction of QS is conducted by the 

deviation corresponding to the initial QS. This approach is effective while the deviation is 

small in the first step. However, for large deviations, the positive effect of the second step 
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is not obvious. A modification was proposed to avoid overcorrection[18, 44, 45], it is a 

simple method, and it did work. But the accuracy is unstable since the corrected QS is not 

related to the metric value in the first step. 

In most conditions, the error after the second step can be reduced to meet the desired 

visual quality. But it is uncertain when the error after the first step is large. Let us give 

some images as examples (images #8 and #9 shown in Fig. 3.20), which have abnormal 

results according to equations (3.1), (2.14), and (3,2). In Fig. 3.23, the desired value of 

PSNR equals 30dB, and the rate-distortion curves for the test image #8 and #9 are 

unknown before compression. We only have the average rate-distortion curve at hand.  

 

Figure 3.23 - Experiments for conventional two-step method 

According to equation (3.1), for PSNRdes=30dB, the initial QS is calculated as the 

value of 58.424. It is drawn in green on the average rate-distortion curve (shown by red). 

First, let us analyze the experiment for image #9; the PSNR is 26,78 dB for QS=58,424, 

then the equation (2.14) is employed, and QS is corrected by the slash from the green point 

on the average rate-distortion curve, the value of QSdes is 21,694, and the corresponding 

PNSR is supposed to be 33,036 dB. However, the ∆QS is greater than 0,5*QSinit. 

Therefore, equation (3.2) is adopted to calculate QS in the second step. Eventually, the QS 

is set as 29,212, and the PSNR equals 30.843 dB (it is drawn in red on the rate-distortion 

curve of image #9). Through data comparison, it is proved that the simple modification 

works for the case of image #9. However, this does not happen for image #8. In the second 

step, the QS is calculated as 103,1 in terms of equation (2.14), and the PSNR is supposed 
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as 31,795 dB then the modification is adopted to correct the QS for the |∆QS|>0.5QSinit. 

Consequently, the QS is set as 87,636. Then, the obtained PSNR is 32,391dB (it is drawn 

in red in the rate-distortion curve for image #8). This result shows that the modification 

still has limitations. 

In this section, we propose a novel approach to correct the QS in the case if a large 

deviation takes place in the first step. It is shown in [42] that the difference can be easily 

observed visually when the error is approximately equal to 1dB. Therefore, it is expected 

to provide a desired quality with errors less than 1dB. If the deviation in the first step 

compression is larger than 1,5 dB, it is treated as a large error, and the modification is 

performed as the following. 

 

 

 

 

 

 

 

 

Figure 3.24 - Experiment for the new modified two-step method on the image #9 

For the image #9, the PSNR after the first step compression is 3,22 dB less than 

PSNRdes(30dB), which is drawn in the red dotted line in Fig.5. It can be learned from this 

difference that the curve of image #9 is below the average curve. The “higher” PSNR 

should be set on the average rate/distortion curve to obtain a better QS value. The value 

can be calculated as PSNRdes plus 3,22dB, and it is 33,22 dB (drawn in the green dotted 

line corresponding to x=58.424). Corresponding to this PSNR value, the QS equals 32,899, 

and it is the QS value set in the second step compression. After the second step 

compression, the PSNR for image #9 is 30,017dB, which is better than the result in the 

conventional method (30,843dB). 

On the contrary, for the image #8, the PSNR after the first step compression is 3,917 

dB larger than PSNRdes(30dB), then a lower PSNR value is supposed to be 26,083 dB. QS 
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corresponds to this PSNR value equals 137,003. After the second compression, the PSNR 

for image #8 is 30,786dB (drawn as a red point in the rate-distortion curve of image #8). 

This value is also better than the result in the conventional method (32,391dB). 

Figure 3.25 - Experiment for the new modified two-step method on image #8 

3) Analysis of results 

The proposed modification of the two-step method is proved to perform better than 

the conventional method on two images, namely, images #8 and #9. In this section, we 

analyze the overall performance of this method on nine remote sensing images. As in 

previous test experiments, the three typical values are set as the desired visual quality, 

40dB, 35dB, and 30dB, respectively. The statistical results for remote sensing images are 

collected in Table 3.19.  

Table 3.19 -Statistic result of hybrid correction  method for remote sensing images 

Visual quality metric Mdes VARfri VARsec MAX∆final 

PSNR 40 0,543 0,124 0,972 

PSNR 35 2,429 0,09 0,773 

PSNR 30 5,248 0,072 0,786 

PSNR-HVS-M 40 0,893 0,034 0,587 

PSNR-HVS-M 35 0,449 0,016 0,296 

PSNR-HVS-M 30 0,845 0,037 0,505 

 

Compared to the conventional method, the variance in the first step is slightly 

improved; the variance after compression in the second step is about 1/5 to 1/70 of the one 

in the first step. Overall, these results are better than the ones for the conventional two-step 

method. The main improvement is reflected in the group of PSNRdes=30dB. The error for 



 

 

135 
 

PSNR does not exceed 0,972 dB, and the error for PSNR-HVS-M does not exceed 

0,587dB. These results are much better than ones for the conventional method. Particularly, 

for the PSNR metric, the variance and maximum error are reduced effectively. The data 

for providing PSNRdes=30 dB are shown in Table 3.20 to understand the data in detail. 

Table 3.20 Statistic and parameters of providing PSNRdes=30dB  in hybrid correction  

method 

Test image QSinit PSNRinit QSrec PSNRpro 

Img#1 58,424 27,982 40,990 29,926 

Img#2 58,424 31,440 74,851 30,284 

Img#3 58,424 31,096 70,927 30,261 

Img#4 58,424 30,660 65,951 30,133 

Img#5 58,424 29,987 58,276 29,999 

Img#6 58,424 28,099 40,713 30,439 

Img#7 58,424 27,654 38,154 30,362 

Img#8 58,424 33,917 137,003 30,786 

Img#9 58,424 26,780 32,899 30,017 

Variance  5,248  0,072 

 

In Table 3.20, five images have an initial error larger than 1,5dB; then, the 

modification scheme is adopted to improve the accuracy. All of the errors are reduced to 

less than 1 dB. Whether the PSNRinit is more or less than PSNRdes, and how large the 

deviation is, the procedure can correct the QS in the right way. 

Based on the overall analysis, it can be stated that our modification of the two-step 

method has two aspects of improvement: 

1) All of the errors are less than 1dB (recall that human beings are able to detect 

difference [42] if it exceeds 1 dB). In our remote sensing image sample, 100% of images 

can achieve this accuracy whilst this probability is 85,2% for the conventional two-step 

method; the main improvement of accuracy relates to the PSNR metric, in particular, its 

lower value area, where the error is difficult to be controlled with the conventional two-

step method;  

2) Besides, this modification also reduces the time consumption in a simple way 

since more images achieve accuracy just after the first step compression. This is due to 
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getting a remote sensing average rate-distortion curve for which initial QS can be better set 

in the first step of compression.  

 

3.4 Conclusions 

 

This chapter improves the compression of grayscale images by the initial two-step 

compression method.  

First, a constraint is placed on the range of parameter correction. This scheme can 

avoid the occurrence of parameter "over-correction," such as negative parameters, and 

ensure the positive effect of parameter correction in the second-step compression on visual 

quality error control, thus extending the use of the two-step method to the DCT-based 

ADCT coder and the DWT-based SPIHT coder. 

Secondly, we propose to carry out image classification according to the image 

complexity and provide multiple average rate/distortion rate curves. The decompressed 

visual quality prediction classifies the to-be-compressed image and thus selects a suitable 

curve model. At the same time, entropy is also used as an evaluation index for image 

complexity, which can be used to pre-classify images quickly.  

Finally, we propose a hybrid scheme in the compression of grayscale remote sensing 

images, which provides a specific average rate/distortion curve according to the image 

category, and adopts different correction schemes according to the size of the correction 

deviation value in the parameter correction, thereby further improving the precision. 

 

 

 

 

 

 

 



 

 

137 
 

CHAPTER 4 

TWO-STEP COMPRESSION METHOD FOR COLOR AND THREE-CHANNEL 

IMAGES AND ITS USE IN REMOTE SENSING 

The maximum compression ratio can be obtained by providing the desired visual 

quality in lossy compression of grayscale images without negatively affecting subsequent 

image processing. The same applies to color images and other multi-channel images. In 

this chapter, research is conducted on providing a desired visual quality in color and multi-

channel images. The two-step compression method is extended to the color and multi-

channel applications in the BPG coder. The quality of the decompressed images is 

evaluated by PSNR-HMA, FSIM, and MDSI visual quality assessment metrics. Finally, 

the effect of visual quality on the classification accuracy of remote sensing images is 

studied. Setting a reasonable visual quality threshold according to the accuracy 

requirements can effectively improve the efficiency of lossy compression. 

 

4.1 Two-step method for color and three-channel images 

 

A two-step method [29] is a fast and efficient choice, and it has proved to work well 

for several gray-scale image compression coders [22, 29]. Having a preliminary stage that 

employs simulations for a set of test images with getting averaged dependences, this 

approach provides fast processing being applied to a given image [30-32].  In view of its 

success in compressing gray-scale images, it is worth promoting this method use for color 

and three-channel images. 

 

4.1.1 An automatic optimization method for BPG compression based on visual perception 

 

Color and multichannel images contain richer information than the corresponding 

gray-scale ones. Color images are perceived by humans as reflections of surrounding real 

world. However, it is more complex to deal with color images and multichannel than with 

grayscale ones [195].  Even though the two-step method works well for BPG on grayscale 
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images, we still need to take into account certain peculiarities of color image perception by 

humans and quality assessment. 

 In this section, we propose and analyze an automatic optimization of a desired 

quality providing for the state-of-the-art BPG compression applied to color images. 

1) Image sets 

The basis for the two-step compression method to provide a desired visual quality in 

lossy compression is based on the average rate-distortion curve of this type of image, 

which is calculated by compressing/decompressing specific image data and calculating the 

visual quality corresponding to different control parameters. Then, the average value of the 

quality metric data is obtained. Therefore, in order to provide the desired visual quality for 

color image compression by BPG coding, firstly, it is necessary to select a suitable basic 

image set to obtain the average rate/distortion curve, and secondly, it is necessary to select 

the corresponding test image set to test the compression method. 

In our experiment, 12 images (see Fig.4.1) from Kodak image dataset have been 

chosen to obtain the average rate-distortion curve off-line. This set simulates a variety of 

data that can be met in practice and contains various types of images including simple 

structure, textural, colorful, etc. All of these images have the size of 512x512 pixels. 

Img #1 Img #2 Img #3 Img #4 Img #5 Img #6 

Img #7 Img #8 Img #9 Img #10 Img #11 Img #12 

Figure. 4.1 - Basic image set using images ##1-12 of the Kodak test set 

Img #13 Img #14 Img #15 Img #16 Img #17 Img #18 

Img #19 Img #20 Img #21 Img #22 Img #23 Img #24 

Figure. 4.2 - Verification image set using image ##13-24 of the Kodak test set 
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Other 12 images (see Fig.4.2) from Kodak image set are used to verify the proposed 

method, there are images of different scenes and people, the complexity of the images 

varies. This verification set can be treated as a tool to understand have we chosen the 

original image simulation set correctly or not. 

2）Automatic optimizing method for BPG on color image 

First, we need to choose a visual quality metric able to characterize well the human 

perception of color images. Of course, PSNR is the classic metric that can be left for 

further statistical analysis but it has been shown that large PSNR values do not 

consistently mean a high perceptual quality, some color banding and blackness are not 

well-captured by PSNR [136]. 

a b 

Figure 4.3 – The dependences of visual quality metrics on Q for 12 color basic images 

PSNR-HMA [196, 197] is a modified image visual quality metric for HVS taking 

into account. In particular, it takes into consideration the perception of mean shift and 

contrast change. Advantages of PSNR-HMA are the following: a) it is expressed in dB and 

covers a wide range of values starting from 15-20 dB (annoying distortions, very bad 

quality) to >40 dB (with high probability, invisible distortions); b) its properties have been 

quite thoroughly studied [31]; c) it can be easily and quickly calculated, its open access 

code is available at [198]. One more advantage is rate-distortion curve behavior close to 

linear (Fig. 4.3.b) – this is important for the two-step procedure based on linear 

interpolations. 

Fig. 4.3.b shows the rate-distortion curves PSNR-HMA vs. PCC (Q for the BPG 

coder) for 12 test images which come from Kodak image set. The plots are similar to those 
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of PSNR vs. PCC in Fig. 4.3.a. Despite of similar behavior, the plots are individual for 

each test image.  

Similar to the implementation of the two-step method in BPG grayscale image 

compression, the calculation of the metric PSNR and PSNR-HMA is displayed in 

equations (4.1)-(4.4). 

𝑄𝑖𝑛𝑖𝑡 = 𝑄𝑒𝑠𝑡 +
𝑃𝑆𝑁𝑅𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅𝑎𝑣𝑒

𝑀′
(4.1) 

𝑄𝑑𝑒𝑠 = 𝑄𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅𝑖𝑛𝑖𝑡

𝑀′
(4.2) 

𝑄𝑖𝑛𝑖𝑡 = 𝑄𝑒𝑠𝑡 +
𝑃𝑆𝑁𝑅‐𝐻𝑀𝐴𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅‐𝐻𝑀𝐴𝑎𝑣𝑒

𝑀′
(4.3) 

𝑄𝑑𝑒𝑠 = 𝑄𝑖𝑛𝑖𝑡 +
𝑃𝑆𝑁𝑅‐𝐻𝑀𝐴𝑑𝑒𝑠 − 𝑃𝑆𝑁𝑅‐𝐻𝑀𝐴𝑖𝑛𝑖𝑡

𝑀′
(4.4) 

Here the PSNR is calculated as color version, a specific feature is that Q can be only 

integer. Thus, the determined values of Q in (4.1)-(4.4) have to be rounded-off to the 

nearest integer.  

3) Analysis of the accuracy 

We focus our attention on lossy compression with either invisible distortions or with 

distortions that are visible but are not annoying. This approximately corresponds to the 

range from 33dB to 38dB in terms of PSNR. Experiments performed for the database 

TID2013 have shown that PSNR about 35dB can be considered as distortion invisibility 

threshold. In our experiment, four values in this region have been set as desired ones, 

namely 40, 38, 35, and 33 dB. The same desired values have been also used for the metric 

PSNR-HMA. The obtained results are given in Table 4.1. 

Table 4.1 -The obtained statistical data (training set). 

Quality metric Mdes VARfir VARsec ∆CR 

PSNR 40 1,0067 0,0966 23,65 

PSNR 38 1,298 0,1253 46,126 

PSNR 35 1,511 0,0804 144,477 

PSNR 33 1,0347 0,2058 737,175 

PSNR-HMA 40 1,0615 0,0606 19,395 

PSNR-HMA 38 1,1131 0,0651 28,45 

PSNR-HMA 35 1,0861 0,0442 45,293 

PSNR-HMA 33 1,1514 0,0575 72,542 
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It can be also interesting to look at compression ratio and its variation for a given 

quality. To get imagination, we present the values of ∆CR that denote the maximal 

difference between CR values corresponding to different images for the same Mdes. 

It can be seen from data in Table 4.1 that our optimization scheme can indeed provide 

visual quality for BPG color image compression, at least, in the human perception region 

under interest. The max VARsec go beyond 0,21; it has considerably (by about one order) 

reduced due to the second step. This indicates that the provided visual quality is enough 

close to the desired visual quality which can be set by a user. In some cases, even one (the 

first) step is enough to produce the desired quality for BPG applied to color image. (the 

examples are the test image #17 in Table 4.2 and test images #15,17,19 in Table 4.3).  

Analysis of ∆CR shows that, for the same desired PSNR, the compression ratio can 

be sufficiently different, especially for small values (33 dB) of the desired metric. The 

differences  ∆CR for PSNR are larger than for the same PSNR-HMA. 

a.Original image #16 b. #16 (PSNR-HMAdes=33dB) c. #16(PSNRdes=33dB) 

d. Original image #13 e. #13 (PSNR-HMAdes=33dB) f. #13 (PSNRdes=33dB) 

Figure 4.4 -Two examples with the desired metric value equal to 33dB for color image 

BPG compression 
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Let us use the images #16 and #13 as examples. The original images are shown in 

Fig.4.4.a and Fig.4.4.d, the decompressed images with the desired PSNR-HMA=33dB are 

shown in Fig.4.4.b and Fig.4.4.e, and the reconstructed images with the desired PSNR 

=33dB are given in Fig.4.4.c and Fig.4.4.f. Comparing them, we can find that the 

distortions are practically invisible when the desired PSNR-HMA=33dB, the CR values 

are equal to 73,192 and 20,133, respectively. But when the desired PSNR=33dB, the 

distortions for the test image #13 are still invisible, while the distortions for the test image 

#16 are annoying, the CR values are equal to 768,731 and 31,575, respectively. The 

detailed data (for PSNR-HMAdes=33dB) are given in Table 4.2. In turn, the detailed data 

(for PSNRdes=33dB) are presented in Table 4.3. 

In Table 4.3, the image #16 has the largest CR (768,731) while the highly textural 

image #13 has the smallest CR (31,575). The provided PSNR values are equal to 

33,255dB and 32,408dB, respectively, both of them have the error less than 0,6 dB. 

According to CR for the test image #16, the obtained result is amazing. However, the 

visual quality of decompressed image is unsatisfactory (see Fig.4.4.c), the distortions are 

obvious compared to the original image. Meanwhile, the visual quality for decompressed 

image #13 is acceptable to human perception. 

Table 4.2- Statistical data for the desired PSNR-HMAdes=33dB of color image on BPG 

coder (verification set) 

Test image Qinit PSNR-HMA_first Qdes PSNR-HMA_prov CR 

kodim13 38 32,373 37 33,243 20,133 

kodim14 38 31,493 36 33,086 26,605 

kodim15 38 32,352 37 32,936 62,066 

kodim16 38 33,882 39 33,088 73,192 

kodim17 38 33,23 38 33,23 56,905 

kodim18 38 31,893 36 33,384 29,041 

kodim19 38 33,692 39 32,981 59,072 

kodim20 38 34,965 41 32,686 92,675 

kodim21 38 34,104 40 32,61 53,549 

kodim22 38 32,212 37 32,776 49,855 

kodim23 38 33,92 39 33,236 86,915 

kodim24 38 32,284 37 32,965 32,213 

Variance  1,1614  0,0575  
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In Table 4.2, the analyzed metric is PSNR-HMA with the desired value equal to 

33dB. The provided values of PSNR-HMA for the test images #16 and #13 are equal to 

33,088dB and 33,243dB, respectively. And the visual quality of both images is 

satisfactory, the distortions are almost invisible. Analysis of variance values in Tables 4.2 

and 4.3 shows that accuracy after the second step has radically improved and this shows 

expedience of using the two-step procedure. In addition, it shows that the simulation set 

has been chosen correctly.    

Thus, some statements can be drawn. Firstly, there are distortions due to lossy 

compression that cannot be characterized by PSNR adequately even if a desired PSNR is 

provided and it is in the considered range. Because of this, we propose to use the metric 

PSNR-HMA to meet the human visual perception better and since it is more “reliable” 

than the metric PSNR. Secondly, by adopting the automatic optimization scheme for BPG, 

one can increase (maximize) the compression ratio while the provided visual quality meets 

the requirement.  

Table 4.3- Statistical data for the desired PSNRdes=33dB (verification set). 

Test image Qinit PSNR_first Qdes PSNR_prov CR 

kodim13 49,000 31,267 40,000 32,408 31,575 

kodim14 49,000 31,481 41,000 32,902 54,828 

kodim15 49,000 33,034 49,000 33,034 385.121 

kodim16 49,000 33,524 51,000 33,255 768,731 

kodim17 49,000 33,078 49,000 33,078 301,304 

kodim18 49,000 31,813 43,000 32,780 84,758 

kodim19 49,000 33,030 49,000 33,030 241,745 

kodim20 49,000 34,790 51,000 34,299 370,091 

kodim21 49,000 33,194 50,000 33,041 303,233 

kodim22 49,000 32,770 48,000 32,902 306,416 

kodim23 49,000 33,905 51,000 33,426 367,731 

kodim24 49,000 32,256 45,000 32,945 103,047 

Variance  1,0347  0,2058  

 

The lower limit of PSNRdes is about 33 dB whilst it is about 28 dB for the metric 

PSNR-HMA, this is because the PCC Q for BPG cannot be larger than 51 (there is the test 

image kodim20 in Table 4.3 for which the provided PSNR is equal to 34,3 dB although the 

maximal possible Q has been used). This also means that if the values of Qdes calculated 
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according to (4.2) or (4.4) are larger than 51, then compression with Q=51 has to be 

carried out at the second step.  

As one can see, in some cases,the metirc value provided at the first step is 

approximately equal to the desired value, then the procedure can quit after the first step. 

This makes it possible to skip the second step and, thus, to accelerate the two-step 

procedure. For this purpose, a precision (maximal allowed error) can be preset - if the 

error of metric providing at the first step is less than a certain threshold value, the 

procedure is supposed to quit. According to data in Tables 4.2 and 4.3, variance after the 

second stage is about 0,06dB2. Then, the standard deviation σ is about 0,25dB. Then, 

supposing the Gaussian distribution of errors and requiring the provided metric values to 

be within the limits from Mdes-2*σ to Mdes+2*σ, the following stopping rule is possible: if 

the error |Mdes-Minit| is less than 0,5 dB, then quit.  

 

4.1.2 Providing a desired quality of BPG compressed images for FSIM metric 

 

It is desired to examine the performance of other adequate visual quality metrics in 

the two-step compression method. 

Concerning adequate quality metrics, color version of FSIM [155] (denoted as FSIMc) 

is one of the best visual quality metric. Standard FSIM and its color version have high 

rank order correlation with mean opinion score (MOS) for images in databases that are 

corrupted by distortion types typical for remote sensing, medical and customer-oriented 

applications including lossy compression. This explains our interest just to this metric. 

1) Rate-distortion curves for BPG color image compression according to the metric FSIMc 

The compression technique BPG has two versions: one is oriented on color image 

compression and another – on grayscale image compression. Here we consider the former 

one where its realization has been taken from [113]. Dependences of quality characterized 

by a chosen quality metric (FSIMc in our case) on Q are individual for any compressed 

image although there are some general tendencies.  

To illustrate them, consider several test images small copies of which are presented in 

Fig. 4.5.  
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RS #1 RS #2 RS #3 RS #4 

RS #5 RS #6 RS #7 RS #8 

RS #9 RS #10 RS #11 RS #12 

Figure 4.5 - Small copies of the test color image 

The rate-distortion curves for these images are given in Fig. 4.6. As one can see, 

distortions cannot be observed for Q<20 where all FSIMc values are close to unity (larger 

than 0,995). Then, starting from Q about 25, the curves start to diverse where for Q>35 

there is a considerable difference in compressed image visual quality depending on image 

complexity.   

 

Figure. 4.6 - Examples of rate-distortion curves for the BPG coder (FSIMc).  



 

 

146 
 

For example, the test images RS03 and RS06 have the lowest quality whilst the test 

images RS01 and RS08 have the highest visual quality. This example clearly demonstrates 

that, for a given Q in the limits from about 30 and till Q=51 the quality of images can vary 

in rather wide limits. Thus, the task of providing a desired quality of compressed data 

according to the chosen quality metric is important.  

Also note that it is stated that FSIMc varies from 0 to 1, but, in fact, for a wide range 

of Q variation the FSIMc values concentrate in the limits from 0,8 to 1. Another 

observation is that FSIMc is a monotonous and smooth function that can be locally 

approximated well by polynomials of the first or second order.  

It can be also interesting to understand what differences in FSIMc values can be 

detected visually. This is important to understand what is an appropriate accuracy of 

providing a desired FSIMc. For this purpose, we have obtained compressed images with 

different values of FSIMc and compared them visually. Some results are given in Fig. 4.7. 

The image in Fig. 4.7,a cannot be distinguished from the original (uncompressed) image. 

Small changes can be detected (some small-sized objects become smeared) by comparing 

the images in Figures4.7,a and 4.7,b. Meanwhile, it is difficult to find differences between 

the images in Figures 4.7,b and 4.7,c. This means that for FSIMc about 0,99 the errors of 

providing FSIMc about 0,003 are acceptable.   

a b c 

Figure. 4.7 - Compressed images with FSIMc equal to 0,995 (a), 0,989 (b), and 0,985 (c)  

Similarly, Fig. 4.8 presents two compressed images with larger CR values (smaller 

FSIMc values). These images are very similar, but they both differ from the compressed 
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image in Fig. 4.7.c. This means that for FSIMc about 0,97 the errors of providing a desired 

FSIMc can be larger, about 0,005.  

Thus, now we know practical requirements to accuracy of providing a desired FSIMc 

for practically important values of FSIMc and would like to see what is possible in 

practice.  

 
a 

 
b 

Figure 4.8 –Compressed images with FSIMc equal to 0,973(a),0,967 (b) 

 2) Two-step algorithm for BPG color image compression with the metric FSIMc 

The two-step procedure is based on average rate/distortion curve, which is obtained 

in advance from a group data of a certain number of basic images. Here, twelve remote 

sensing images are chosen as the basic image set (shown in Fig.4.5), serial 

compression/decompression experiments are conducted by varying Q from 1 to 51, the 

visual quality data of decompressed images are recorded in tabular form as FSIMc values 

depending on Q. Subsequently, we have averaged the data of twelve images for each value 

of Q, and built the average distortion-ratio curve. This average rate/distortion curve is 

given in Fig. 4.6.  

Two-step compression algorithm is realized in two stages. At the first stage, an image 

is compressed with initial value of Q, which is calculated from the obtained average 

rate/distortion data array. For BPG encoder, the initial Q equals to the estimated Q 

according to average rate/distortion array. There are two reasons for this. First, when 

simulating the average rate-distortion curve model, the interval of Q is set as 1. Second, 

the BPG only supports the integer form parameter, the rounding-off is essential for Qinit 
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before using in compression, the initial Q equals to the estimated Q. Therefore, the initial 

Q is replaced by estimated Q to be used in the first step compression. Let FSIMcdes denote 

the desired visual quality value preset by a user, then FSIMcave is the value closest to 

FSIMcdes at the right end of the corresponding interval of the average rate/distortion curve 

data. Qest is the value of Q corresponding to this FSIMcave on average rate-distortion array. 

An image in hand is compressed the first time with Qinit, and followed by decompression.  

Before the second stage, FSIMc is calculated for the decompressed image to evaluate 

its visual quality with respect to the original image, the value is recorded as FSIMcinit. The 

visual quality value FSIMcinit usually occurs to be quite close to the desired value, and, in 

some cases, this value is the closest the BPG coder provides to the desired visual quality, 

then the second step compression is not needed. But, in other cases, the accuracy can be 

further improved. Whether the second step compression is required is determined by the 

correction value of Q, which is calculated by equation (4.5). 

𝑄𝑑𝑒𝑠 = 𝑄𝑖𝑛𝑖𝑡 +
𝐹𝑆𝐼𝑀𝑐𝑑𝑒𝑠 − 𝐹𝑆𝐼𝑀𝑐𝑖𝑛𝑖𝑡

𝑀′
(4.5) 

3) Result analysis 

For testing the two-step compression method using FSIMc, four typical values are 

chosen, 0,99,0,98,0,97, and 0,96, respectively. Serial experiments are carried out for the 

basic image set, the data of each image are recorded in Tables, and the statistical results is 

shown in Table 4.4. 

Table 4.4 - The statistical data of the basic color image set for BPG coder (FSIMc) 

Mdes VARfir VARsec MEANsec 

0,99 2,86×10-5 2,99×10-6 0,0007 

0,98 7,22×10-5 4,34×10-6 0,0003 

0,97 1,04×10-4 2,67×10-6 0,0016 

0,96 1,49×10-4 1,53×10-5 0,0003 

 

In this section, we calculated the mean bias of FSIMc finally provided in the second 

step, expressed as MEANsec, the data gathered in Table 4.4 suggest that the two-step 

algorithm of FSIMc works well in the considered conditions, since the variance after the 

second step compression has dropped by approximately an order of magnitude, and the 

mean error does not exceed 0,0016, i.e. the provided values are practically unbiased.  
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VARfir and VARsec values are considerably larger for smaller desired values of 

FSIMc. However, as we have shown in the previous Section, this is not the problem since 

requirements to accuracy become less strict when the desired FSIMc reduces.     

To further check whether or not the average curve model obtained from the basic 

image set works for other images, we have chosen other 12 remote sensing images to 

conduct the verification experiment. These images are numbered as RSI #13…#24. The 

statistical results for the validation image set are shown in Table 4.5. 

Table 4.5 -The statistical data of validation color images set for the BPG coder (FSIMc) 

Mdes VARfir VARsec MEANsec 

0,99 1,96×10-5 6,62×10-7 0,0007 

0,98 3,32×10-5 2,97×10-6 0,0003 

0,97 3,83×10-5 5,03×10-6 0,0003 

0,96 6,12×10-5 6,54×10-6 0,0007 

 

As one can see, the tendencies and values for verification experiment are similar to 

Table 4.4, the accuracy is improved in the second step, and the mean error does not exceed 

0,0007. This result proves that the basic image set was chosen correctly, and the average 

curve model works well for remote sensing images of the same size. More detail data for 

12 validation images for FSIMcdes=0,96 are shown in Figure 4.9.  

 

 

 

 

 

 

 

 

 Figure4.9 - The result of validation image set (FSIMcdes=0,96). 

In this example, two group data are displayed, the data obtained in the first step 

compression and the data gathered in the second step, respectively. On the basis of data 

observation in Fig4.9, it follows that the accuracy is improved due to the second step 
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compression, since visual quality provided in the second step is either closer to the desired 

value than the ones provided in the first step or remains the same (as, e.g., for the test 

images RSI # 18 and 21). Besides, the maximum error does not exceed 0.005, this error is 

acceptable in practice according to analysis in Fig 4.7 and 4.8. 

In addition, as we have mentioned earlier, not all images need the second step 

compression. There are three images in Figure 5, which are marked as overlapping red 

dots and black squares. For these three images, the Qdes after rounding-off equals to Qinit, 

the two-step algorithm skips the second step compression to save time in such situations.  

In Figure 4.9, three out of twelve images need only one step compression to meet the 

requirement of accuracy, whilst other 9 images need the second step to improve the 

accuracy. For all verification experiments, 24% images need only one step of compression 

to provide the desired visual quality.  

 

4.2 Quality control for the BPG lossy compression of three-channel remote sensing images 

 

Considerable attention has been paid to metrics able to characterize the quality of RS 

data [36, 178, 199], including the artificial visible-like images based on SAR data 

generated with the use of deep CNNs [200]. In particular, special attention has been paid 

to the so-called visually lossless compression for RS image browsing and other 

applications [165, 201-204]. This is important since compressed RS images are often 

subject to visual inspection. The necessity to provide a desired compression ratio and 

quality quickly enough is important in practical applications where processing time and 

resources are limited [205].  

It has been demonstrated recently [36] that the Mean Deviation Similarity Index 

(MDSI) [158] and some other elementary metrics can perform well in the characterization 

of three-channel RS images with distortions typical for remote sensing imagery, including 

distortions caused by lossy compression. It has also been shown that lossy compression, 

under certain conditions, can lead to practically the same or even better performance of 

image classification compared to the classification of original uncompressed data [54, 125, 

142, 206, 207]. This may happen when noise suppression is observed or if distortions 
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cannot be detected visually [54]. This means that two benefits can be provided 

simultaneously—one obtains the CR that sufficiently differs from unity and an improved 

(or, at least, not worse) classification is observed. Additionally, sufficient work has been 

carried out towards accelerating lossy compression while attaining a predefined desired 

quality. 

The first research goal of this Section is to check whether or not it is possible to apply 

the two-step method for compressing multi-channel RS images—more precisely, three-

channel images that include color images and vision range data of multi-spectral imagery. 

The second goal of this Section is to investigate some important properties of the MDSI 

metric, pre-selected as the most appropriate, and to verify its usefulness for the proposed 

two-step approach. We also analyze the degree of accuracy of the MDSI that should and 

can be achieved in practice. 

 

4.2.1 Metrics for the Assessment of the Visual Quality of Three-Channel RS Images 

 

1) Properties of Three-Channel RS Images 

Compared to conventional color images (photos), RS images have some specific 

features. First of all, they are usually more highly structured and each object has a 

semantic meaning [208], whereas natural images are more chaotic. These objects present 

in RS images need to be analyzed in further stages of data processing, particularly target 

recognition, classification, segmentation, and parameter estimation. For example, the main 

goal of the image segmentation process related to partitioning an image into a set of 

homogeneous segments, in terms of chromatography or texture, is highly important for 

remote sensing data [78]. Meanwhile, the fact that RS images often include large areas of 

background, which is much less important than foreground objects [87], may also be taken 

into account in compression.  

Secondly, the correlation between component images of three-channel RS data can 

differ from the correlation of red, green, and blue components of color images. Whilst, for 

color images, the cross-correlation factor is usually around 0,7 [173], the correlation factor 

between components of three-channel RS data may be significantly higher [209]. This 
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might influence noticeably the final compression performance if 3D approaches are 

applied.  

Furthermore, there are no commonly accepted databases of “pristine” (reference, 

distortion-free) RS images. Moreover, types of distortions inherent for RS images and 

color images partly coincide but are partly different. For example, image dithering is not 

met in practice in RS images. Meanwhile, speckle noise is not typical for color images but 

it might be an important factor for RS images of a special kind (synthetic aperture radar 

ones). This obstacle prevents the direct use of color image databases for making 

conclusions and recommendations for RS images. However, recently, the TID2013 dataset 

has been indirectly used to analyze the subsets of distortion types that might be present in 

RS images. This has allowed the determination of good elementary visual quality metrics 

for the adequate characterization of RS image quality and the design of combined metrics. 

Already known visual quality metrics, used in a combined metric [36] as one of the inputs, 

are referred to as elementary metrics. In particular, the MDSI [158] has been presented as 

one of the best elementary metrics [36]. Hence, more details about this metric are provided 

below, together with an explanation of why it has caught our attention.  

It should be kept in mind that the visual quality metrics describe the quality of data 

from a specific viewpoint and the relation between visual quality metrics and, e.g., text 

recognition from document images or image classification accuracy is not fully known 

[206]. Nevertheless, preliminary results of the classification of compressed images have 

already demonstrated that visual quality has a high correlation with classification accuracy, 

especially for classes represented by small-sized, prolonged, and textural objects, i.e., for 

classes that are quite heterogeneous [36]. Since high-frequency information can be lost 

due to lossy compression for large CR, it might harm the classification as well.  

2) The MDSI Metric and Its Properties 

An important property of the MDSI metric is that, during its computation, a gradient 

magnitude is used to measure structural distortions, whereas chrominance features are 

used to measure color distortions (recalling that both these types of distortions are equally 

important for three-channel RS images). Subsequently, the two obtained similarity maps 

are combined to form a gradient-chromaticity similarity map. Differently than for SSIM 
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and FSIM, the deviation pooling strategy is used to compute the final quality score. In 

comparison to previous research, this new gradient similarity map is more likely to follow 

the human visual system (HVS).  

Providing the desired visual quality in lossy compression is a challenging task; 

however, it would be possible if a metric value was associated with a certain level of 

quality. It could also be useful to know a range of metric values for which distortions are 

practically invisible. In lossy compression, the desired visual quality is often within a 

certain range, also for RS images. As illustrated by some already completed analyses 

based on other metrics [54], the lower limit is such that lossy compression has no negative 

impact on further image processing. Concerning the upper limit, the lossy compression 

should provide a higher CR than possible to achieve by the lossless compression (limited 

by entropy). A reasonable threshold should be set in such a way that the introduced 

distortions are invisible, so the visual quality of compressed data should be identical to 

lossless compressed images but higher CR can be achieved. This threshold is around 40 

dB in terms of the PSNR-HVS-M metric multi-channel RS images [54].  

To provide a reasonable range for the metric MDSI, we have tested 3000 color 

images of the database TID2013 to obtain the statistical data results [145] and put them 

into three categories, namely visible, just noticeable, and invisible distortions. Since MOS 

values have been provided for each image in the TID2013 dataset, the scatter plot for 

MDSI vs. MOS for the three mentioned classes of images is shown in Figure 4.10. 

 

Figure 4.10 –The scatter plot of MDSI vs. MOS for the TID2013 dataset 

Combining the statistical results and MOS values, it can be approximately stated that 

there are three gradations of image quality according to MDSI: 
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 • excellent quality (MDSI ≤ 0,15), the distortions are mostly invisible;  

• good quality (0.15 < MDSI ≤ 0,25), the distortions can be just noticeable; 

• middle and bad quality (MDSI > 0,25), the distortions are visible or they can be 

annoying. Therefore, the reasonable range under interest is set as the range from 0,10 to 

0,25. It is also worth noting that the relation between MDSI and MOS is almost linear and 

this should be considered as one more advantage of the MDSI metric. 

 

4.2.2 The two-step method for lossy compression 

 

First of all, a certain number of images are chosen to be compressed/decompressed 

assuming a series of CCP values, further referred to as the basic image set (sample images 

are shown in Fig 4.11).  

The block diagram of the two-step compression method is illustrated in Fig4.12; in 

the first step, the initial CCP is determined using the desired visual quality and the average 

rate-distortion curve.  

To improve the accuracy of provided visual quality, the CCP value needs to be 

corrected before the second step using the following equation:  

𝐶𝐶𝑃𝑑𝑒𝑠 = 𝐶𝐶𝑃𝑖𝑛𝑖𝑡 +
𝑀𝑑𝑒𝑠−𝑀𝑖𝑛𝑖𝑡

𝑀′
,                                                 (4.6) 

where Mdes is the desired visual quality preset by the user, and Minit denotes the quality 

calculated after the first step compression. 

This corrected CCP value may be different for different images. Finally, the second 

step, compression, is carried out using the CCPdes, and the compressed image file obtained 

after the second step is considered as the final output with the desired quality. 
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Orginal image #1 (20, 0,0748, 5) (25, 0,094,7) (30, 0,1191,10) 

 

(35, 0,145, 16) (40,0,1775, 39) (45,0,2287, 138) 

Orginal image #2 (20, 0,0745, 8) (25, 0,1017, 19) (30, 0,1223, 36) 

 

(35, 0,1418, 83) (40,0,1708, 240) (45,0,2263, 676) 

Orginal image #3  (20, 0,0656, 6) (25, 0,0868, 12) (30, 0,1144, 25) 

 

(35, 0,1487, 58) (40,0,2034, 151) (45,0,2868, 484) 

Figure. 4.11 -Samples of the basic RS images used in experiments. The values provided in 

brackets concern Q, MDSI, and CR values, respectively 
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Figure. 4.12 - The block diagram of the two-step compression method 

 

4.2.3 Implementation of the Two-Step Method for the BPG Coder 

 

In this section, it is considered how the lossy compression coder is applied to 

compress three-channel RS images. The description of the implementation of the two-step 

compression method for the BPG coder is provided further. 

1）The BPG coder on three-channel remote sensing images 

a b 

Figure 4.13 - Additional color test images from the USC-SIPI: (a) Frisco (image no. 

2.1.03); (b) Diego (image no. 2.2.05). 
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A special comparison has been carried out for the considered case, i.e., for the MDSI 

metric and color RS images. Two 512 × 512 pixels color images for simple and complex 

structures (Frisco and Diego, respectively), shown in Figure 4.13, have been processed to 

produce three different values of MDSI: 0,1, 0,15, and 0.2.  

The CR values have been obtained for the BPG (version 4:2:2), the 3D version of the 

AGU coder [210], JPEG, and JPEG2000 [124]. The data are collected in Table 4.6. Their 

analysis shows that the BPG slightly outperforms the 3D AGU and JPEG2000 for the 

middle values of the Q parameter (high quality of compressed images) and has obvious 

benefits for large Q values (low quality of the compressed image). Additional data on the 

comparison of coders can be found in [54, 207], showing that better performance of a 

coder usually leads to better classification. 

Table 4.6 - Performance comparison of several coders: the CR values for two images and 

three MDSI values 

Quality Coder CR  

Frisco Diego 

MDSI=0.1 

BPG 5,6 4,2 

3D AGU 5,2 4,0 

JPEG 4,9 2,7 

JPEG2000 3,8 3,2 

MDSI=0.15 

BPG 34,4 14,8 

3D AGU 21,2 9,9 

JPEG 20,1 8,7 

JPEG2000 10,2 6,5 

MDSI=0.2 

BPG 139,2 64,6 

3D AGU 60,4 22,0 

JPEG 38,9 21,8 

JPEG2000 37,9 15,2 

 

2) Calculation of the Average Rate-Distortion Curve According to the MDSI 

The prime task in the implementation of the two-step method for the BPG coder is to 

obtain the average rate-distortion curve for the considered visual quality metric (MDSI). 

Based on the analysis provided in Section 4.2.2, this average rate-distortion curve results 

from statistical data from a certain number of images. In this experiment, twelve 1024 × 

1024 pixel three-channel RS images taken from the USC-SIPI dataset (volume 2: Aerials) 
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have been chosen as the basic image set, shown in Fig 4.5. Then, the compression and 

decompression have been carried out for each image with various CCP values, where all 

possible values of the Q parameter have been used. To obtain the average rate-distortion 

curve, MDSI values have been calculated for all 612 images (12 original images and 51 

values of the Q parameter), and further averaged for the individual Q values. The obtained 

curves are presented in Fig 4.14 independently for each of the images used in the 

experiments. The obtained curves may be divided into four areas for further analysis: 

 • Q ≤ 3—the visual quality is constant and very high;  

• 4 ≤ Q ≤ 25—the visual quality starts to change slowly, and the MDSI values for 

different images are very similar;  

• 26 ≤ Q ≤ 40—the visual quality changes more significantly, but the deviations 

between quality indicators of different images are still small;  

• Q ≥ 41—the visual quality starts to rapidly decline and the deviations of the MDSI 

values for different images become obvious. 

Figure 4.14 - Curves of the MDSI dependence on the Q parameter for individual basic 

images (RSI #1–#12) and the obtained average curve. 

Consequently, the optimal work area of the Q parameter seems to be [26, 40], and the 

corresponding range of the MDSI values is [0,1, 0,25].  

From Fig 4.14, we can also find that the difference in MDSI between images varies 

with the Q. Whilst the MDSI values are almost the same for small Q values (where the 

introduced distortions are anyway invisible), sufficient differences can be observed for 

large Q (e.g., data for Q equal to 40 and 45, which are of practical interest). 
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4.2.4 The experimental results 

 

The two-step compression method has been applied firstly for the basic image set to 

provide four typical values for the MDSI metric, representing the four classes provided in 

Section 4.2.3. These four typical values have been set as 0,1, 0,15, 0,2, and 0,25, 

respectively, and the obtained statistical data are shown in Table 4.7, where Mdes denotes 

the desired value of the MDSI metric, VAR1 stands for the variance of MDSI provided in 

the first step, and VAR2 is the variance of MDSI provided in the second step. For a better 

understanding of the data, the mean MDSI values finally provided in the second step are 

provided as well, denoted as MEAN2. 

Table 4.7 - The statistic data of basic images set for BPG coder (MDSI) 

Mdes VAR1 VAR2 MEAN2 

0,1 2,24×10-5 2,24×10-6 0,1010 

0,15 4,31×10-5 6,73×10-6 0,1495 

0,2 1,2×10-4 1,32×10-5 0,1978 

0,25 3,32×10-4 1,85×10-5 0,2466 

 

The analysis of the data provided in Table 4.7 leads to the conclusion that the 

variance after the second step of compression has decreased by approximately one order of 

magnitude for each desired value. It proves that the proposed two-step procedure works 

well in the considered conditions. It can also be noticed that both variances VAR1 and 

VAR2 tend to increase if the desired MDSI increases. This means that the task of 

providing the desired MDSI is more important for larger Mdes values, e.g., 0,2 or 0,25 (for 

Mdes = 0,1, the distortions are invisible and they remain invisible if the desired MDSI is 

provided with the error of around 0,01). The mean absolute error of the desired quality, 

calculated as |Mdes − MEAN2|, does not exceed 0,034, and its value increases as the desired 

visual quality decreases, which is similar to the trend observed in previous works with the 

other coders [42, 45].  

To verify the representativeness of the basic set, the other 12 RS images have been 

chosen as the test image set, shown in Fig 4.15 (further referred to as RSI #13–#24), which 



 

 

160 
 

is also a part of the USC-SIPI dataset. Then, the two-step compression method has been 

applied to these images to verify the correctness and universality of the previously 

obtained curve model, leading to the statistical data shown in Table 4.8. 

Table 4.8 - The statistical data for the test image set for BPG coder (MDSI) 

Mdes VAR1 VAR2 MEAN2 

0,1 2,3×10-5 4,75×10-6 0,1003 

0,15 5,48×10-5 6,33×10-6 0,1490 

0,2 1,7×10-4 2,94×10-6 0,1989 

0,25 3,01×10-4 2,04×10-5 0,2465 

 

RSI #13 RSI #14 RSI #15  RSI #16 

RSI #17 RSI #18 RSI #19 RSI #20 

RSI #21 RSI #22 RSI #23 RSI #24 

Figure 4.15 – The original images from the test remote sensing image set  

As shown in Table 4.8, for each desired MDSI value, the variance after the second 

step of compression has also decreased by approximately an order of magnitude, and the 

mean error does not exceed 0,035. As one can see, the tendencies and values are similar to 

those observed in Table 4.7, so the basic image set has been chosen correctly to obtain the 

average rate-distortion curve and this model works well for other three-channel RS images.  
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To analyze the data for 12 test images (RSI #13–#24) in detail, the results obtained 

for Mdes = 0,25 are presented in Table 4.9, where Qinit denotes the parameter Q used for the 

first step of compression. It comes from the average rate-distortion curve and equals 45 for 

all images. As may be seen in Table 4.9, although the initial MDSI values are different for 

individual test images, their variance after the second step has decreased significantly, 

being only 1/15 of its value after the first step. The mean value of the MDSI after the 

second step is also noticeably closer to 0,25; hence, its average relative error has also 

decreased (from 2,08% to 1,4%). 

Table 4.9 - The statistical data for the test image set（the desired value of MDSI=0,25） 

Test image Qinit MDSIinit Qdes MDSIpro 

Img# 13 45 0,2587 44 0,2427 

Img# 14 45 0,2491 45 0,2491 

Img# 15 45 0,2454 45 0,2454 

Img# 16 45 0,2185 47 0,2447 

Img# 17 45 0,2167 47 0,2394 

Img# 18 45 0,2436 45 0,2436 

Img# 19 45 0,2611 44 0,2445 

Img# 20 45 0,2477 45 0,2477 

Img# 21 45 0,2568 45 0,2568 

Img# 22 45 0,2586 44 0,2443 

Img# 23 45 0,2188 47 0,2507 

Img# 24 45 0,2631 44 0,2489 

VAR  3,01×10-4  2,04×10-5 

MEAN  0,2448  0,2465 

 

In general, the accuracy has radically improved due to the second step of 

compression. Meanwhile, there are cases when the MDSI after the second step is the same 

as for the first step, e.g., this happens for RSI #13. This means that there is no need to 

correct the Q parameter and apply the second step of compression in such cases. As shown 

in Table 4.8, 5 out of 12 images needed only one-step compression to meet the quality 

requirements, whilst the other seven images needed the second step to improve the 

accuracy. For all verification experiments (carried out for all 24 images and four desired 

MDSI values), 28,1% of images needed only the first step of the two-step compression to 

provide the desired visual quality.  
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4.2.5 Discussion 

 

To analyze the accuracy of the provided visual quality for the BPG-based lossy 

compression of three-channel remote sensing images, three images (RSI #13, #14, and #16) 

have been selected as representative examples with the desired visual quality (MDSI) 

equal to 0,25. The decompressed images for the two-step compression method are shown 

in the middle (third) column in Fig 4.16. For the desired MDSI value equal to 0,25, the 

initial Q is equal to 45; the calculated Qdes values are different for different images (equal 

to 44, 45, and 47, respectively). The two images on the left from the third column are the 

images obtained if the parameter Q is set as Qdes - 1 and Qdes - 2, and the two images on the 

right are the images when Q is set as Qdes + 1 and Qdes + 2. For RSI #14, Qinitappears to be 

the appropriate value as for its change (increase or decrease), the error ∆MDSI =    

|MDSIfinal−MDSIdes| increases. For RSI #13, the parameter Q is corrected to 44, and 

compared to the four other values, compression with the Qdes produces MDSIfinal, which is 

the closest to the MDSIdes. In contrast, for RSI #16, the initial Q is corrected to 47, and 

compression with this Qdes produces the smallest error between MDSIfinal and MDSIdes. 

Concerning the error, for RSI #16 considered as an example, the provided MDSIfinal is 

0,2447, and the error between MDSIfinal and MDSIdes is 0,0053. Fig 4.16 shows five 

decompressed images resulting from RSI #16, where images compressed with two values 

of Q differing by unity seem to be practically identical, but if Q differs by 2 or more, e.g., 

for RSI #16 (45, 0,2185, 233) and RSI #16 (49, 0,2817, 527) compared to RSI #16 (47, 

0,2447, 347), the difference is much easier to observe. Hence, if the difference ∆MDSI is 

approximately 0,015, it is difficult to observe the changes in the decompressed images. 

However, it becomes noticeable if ∆MDSI is approximately 0,03, e.g., for RSI #16 (46, 

0,2303, 280) and RSI #16 (48, 0,2586, 424). Therefore, in practical applications, it is 

enough to ensure errors of providing the desired MDSI less than ≈0,01. Consequently, it 

can be drawn that the accuracy of the two-step method for the BPG coder is good enough. 
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(42,0,2196, 156) (43,0,2304, 197) RSI #13  

(44,0,2427, 240) 

(45,0,2587, 298) (46,0,2703, 363) 

(43,0,222, 162) (44,0,2357, 202) RSI #14  

(45,0,2491, 255) 
(46,0,2626, 315) (47,0,2769, 394) 

(45,0,2185, 233) (46,0,2303, 280) RSI #16  

(47,0,2447, 347) 

(48,0,2586, 424) (49,0,2817, 527) 

Figure 4.16 - The sample decompressed images obtained for the Q values around Qdes. The 

values provided in brackets concern Q, MDSI, and CR values, respectively 

In summary, for images where the second step is necessary, regardless of whether the 

correction is forward or reverse (initial Q is increased or decreased), it gives a positive 

impact and eventually provides the visual quality that is the closest to the desired one. 

Additionally, the CR values provided for image lossy compression in the neighborhood of 

the distortion invisibility threshold are considerably higher than possible to achieve using a 

lossless compression.  

To analyze the computational efficiency of the proposed approach, some tests have 

also been performed using a notebook with an Intel® Core™ i7-4710HQ CPU @2,50 

GHz and 16,0 GB RAM, controlled by the 64-bit Windows 10 Pro operating system for 

the x64 processor architecture. For 512 × 512 pixels images, the compression time is from 

0,02 s to 0,05 s depending on image complexity and the value of the parameter Q (a larger 

time is needed for more complex structure images). The decompression time is from 0,006 

s to 0,019 s (more time is spent on the decompression of more complex structure images). 

For 1024 × 1024 pixels images, the compression time is from 0,06 s to 0,12 s; the 

decompression time is sufficiently smaller (from 0,02 s to 0,06 s). The MDSI values can 
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be calculated very quickly (the time for their calculation is only around 1,5 times longer 

than for the calculation of MSE). 

 

4.3 Analysis of the effect of controlling visual quality on remote sensing classification 

 

If lossy compression is applied to RS images, then distortions are introduced and this 

can lead to reduction of data classification accuracy [141, 211]. Thus, choosing a method 

of data compression and setting its parameters, one should keep in mind that lossy 

compression should not results in essential degradation of classification accuracy. It has 

been shown that if noise is present in RS images, lossy compression, under certain 

conditions, can even lead to improvement of classification accuracy due to specific noise 

filtering effect inherent for lossy compression. In turn, if RS images are practically noise-

free (if their original quality is high), lossy compression results in decreasing the 

probability of correct classification.  

 

4.3.1 Classification of compressed multichannel images and its improvement 

 

In [8], it is shown that if compressed image quality is characterized by the metric 

PSNR-HVS-M [38] approximately equal to 43… 45 dB (this corresponds to invisible 

distortions) reduction of classification accuracy due to lossy compression is negligible. 

However, for smaller values of this visual quality metric, classification accuracy reduces. 

Meanwhile, the paper[211] presents a particular example and it is not clear how 

classification accuracy behaves when distortions are visible (PSNR-HVS-M is less than 40 

dB). Besides, not a lot of image compression methods has been employed yet in analysis 

of classification accuracy. In addition, one can guess that influence of a classifier type can 

be essential as well as properties of classes (used features) might have impact. 

Thus, the main goal of this Section is to analyze the influence of image compression 

on data classification accuracy using criteria typical just for classification [212]. Here, we 

consider three widely used classifiers, namely, support vector machine(SVM)[213], 

multilayer perceptron (MLP)[214, 215], and logistic regression(LGR)[216]. The 
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component-wise version of the coder AGU [108] is used for which a desired visual quality 

can be provided in different ways [81].  

1)RS image component-wise compression 

A multichannel RS image can be compressed in numerous ways[19, 211, 217, 218]. 

Different coders can be used [217, 219],it is possible to apply compression component-

wise and in three-dimensional way [219], data can be pre-processed or not, etc. A choice 

of an optimal or appropriate compression method in practice depends upon many factors 

including priority of requirements to compression, restrictions, possible necessity to use 

standard tools, power consumption, etc.  

a b c 

Figure 4.17 - Test image (Landsat TM image) before compression (a), after compression 

with providing PSNR-HVS-M equal to 36 dB (b), PSNR-HVS-M equal to 30 dB (c) 

In our case, we have used component-wise compression using the coder AGU [108]. 

As a case study, we have used a three-channel image visualized in Fig. 4.17.a. This test 

image (represented as color image) has been acquired in three optical bands of Landsat 

TM imager where these bands relate to central wavelengths equal to 0,66 m, 0,56 m, 

and 0.49 m. These component images have been associated with R, G and B of 

synthesized color image of size 512x512 pixels. This image is “attractive” because of the 

following reasons. First, there are five visually distinguishable classes, namely, ‘‘Soil’’ 

(class 1), ‘‘Grass’’ (class 2), ‘‘Water’’ (class 3), ‘‘Urban (Roads and Buildings)’’ (class 4), 

and ‘‘Bushes’’ (class 5) where color features for many classes intersect [214], i.e. 

classification is not a simple task. Secondly, investigations of noise and other factors 
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influence on the classification accuracy were previously performed for this test image [214, 

220]. 

Compression has been done in such a manner that PSNR-HVS-M values are 

practically the same for all components and there are six values of this metric considered 

in our experiments: 42, 39, 36, 33, and 30 dB. Figures 4.17.b and 4.17.c show compressed 

images with providing PSNR-HVS-M values equal to 36 and 30 dB, respectively.  

Visual analysis of image in Fig. 4.17.b shows that there is a noticeable difference 

compared to the image in Fig. 4.17.a whilst difference is even larger for the image in Fig. 

4.17.c (consider the fragments marked by red rectangles). Thus, we can study inter-

connection between visual quality and classification results.  

Table 4.10 - Compression data for three components of multichannel remote sensing 

image 

Component PSNR-HVS-M des QS PSNR-HVS-M pro CR 

Pseudo-red 

45 dB 13,1221 44,996 dB 5,0373 

42 dB 17,3724 41,941 dB 6,0078 

39 dB 22,7182 38,943 dB 7,2387 

36 dB 29,8245 36,059 dB 8,9515 

33 dB 40,3305 32,993 dB 11,7343 

30 dB 55,5586 30,007 dB 16,5026 

Pseudo-green 

45 dB 12,246 45,6906 dB 4,8401 

42 dB 17,2849 41,9363 dB 5,9943 

39 dB 22,6586 38,9121 dB 7,2356 

36 dB 29,8559 35,9922 dB 8,9683 

33 dB 40,2208 33,0062 dB 11,7443 

30 dB 55,1339 29,9965 dB 16,4446 

Pseudo-blue 

45 dB 13,1779 44,8522 dB 5,0813 

42 dB 17,2265 41,847 dB 6,0157 

39 dB 22,5360 38,9052 dB 7,247 

36 dB 29,7293 35,9977 dB 8,9929 

33 dB 40,0144 32,9986 dB 11,7818 

30 dB 55,0136 30,0008 dB 16,5767 

 

Besides, we would like to present some additional compression data. They are given 

in Table 4.10. We represent the data for three components of multichannel data, PSNR-

HVS-M that is desired, QS that provides this PSNR-HVS-M and the obtained value. One 

can observe expected tendencies: since component images are highly correlated, QS and 
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CR values are practically the same for the same desired PSNR-HVS-M for all three 

components. The data also show that CR for PSNR-HVS-M is equal to 30 dB is about 

three times larger when PSNR-HVS-M is equal to 45 dB. Thus, there can be an essential 

gain in CR if reduction of probability of correct classification on QS (and, therefore, CR) 

is quite slow. 

2) Image classification results 

The proposed procedure for classifying multichannel images includes two stages. At 

the first stage, pixel-by-pixel classification is carried out with training using elementary 

classifiers. 

For the formation of training samples (fragments of the initial noisy image containing 

objects of only one class), color masks were used, constructed by highlighting clearly 

distinguishable, homogeneous areas representing each class of objects of natural and 

anthropogenic origin [1, 4]: 1 (red) – ”soil”, 2 (green) – “grass”, 3 (blue) – “water”, 4 

(yellow) – “urban”, 5 (cyan) – “bushes”; classes 3 and 4 contained both areal and linear 

objects: “water” = [lake, river], “urban” = [buildings, roads]. The size (expressed by the 

number of pixels) of the training set and verification set is: class - [training set], 

[verification set]; soil - [1610], [12524]; grass - [1365], [25146]; water - [373], [4986]; 

urban - [188], [6230]; bushes - [720], [8692]; total - [4256], [57578]. An F-measure was 

used as a criterion for recognition quality. This is a harmonic mean of accuracy and 

completeness (accuracy shows how many of the objects identified by the classifier as 

positive are indeed positive; completeness shows how many of the positive objects were 

identified by the classifier). The harmonic mean has an important property –it is close to 

zero if at least one of the arguments is close to zero. In the multi-class case, this is the 

average of the F-measure of each class with weighting depending on the average 

parameter. The results of class recognition of the original (uncompressed) image and the 

image after compression with providing PSNR-HVS-M equal to 30 dB are shown in Fig. 

4.18. Estimates of probabilities of correct classification for the multichannel image are 

given in Table 4.11. 

Analysis of the classification results of compressed images shows that an increase in 

the compression ratio leads to a deterioration in the reliability of objects recognition. 
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Moreover, compression had the greatest impact on the probability of recognizing such 

classes as 4 - “urban” and 5 - “bushes”. Wherein the logistic regression classifier turned 

out to be the most sensitive. A decrease in PNSR-HVS-M to 30 dB leads to a decrease in 

quality for these classes from 0,67 to 0,316 and from 0,42 to 0,042, respectively. 

Compression had less impact on the recognition results of classes 1 - “soil” and 2 - “grass”. 

For different classifiers, the decrease in quality was 4% and 2,5 - 41%, respectively. The 

best results for classifying objects in a compressed image were shown by the MLP. The 

overall recognition probability decreased by only 2,3% compared to the original image, 

while for LGR this decrease was 41,7%. 

Table 4.11 estimates of correct recognition probability for objects in the images 

Classifier 
Class Overall 

probability Soil Grass Water Urban Bushes 

Original image 

SVM 0,73 0,99 0,84 0,71 0,25 0,8105 

LGR 0,76 0,99 0,85 0,67 0,42 0,8261 

MLP 0,78 0,96 0,97 0,60 0,54 0,8345 

PSNR-HVS-M=36 dB 

SVM 0,73 0,973 0,84 0 0,386 0,773 

LGR 0,76 0,98 0,83 0,531 0,376 0,821 

MLP 0,78 0,97 0,936 0,58 0,46 0,813 

PSNR-HVS-M=30 dB 

SVM 0,73 0,965 0,76 0,396 0,15 0,761 

LGR 0,73 0,406 0,527 0,316 0,042 0,481 

MLP 0,78 0,94 0,97 0,448 0,382 0,815 

 

At the second stage of the procedure, a multilayer classification (analysis "in depth") 

is carried out based on the recognition results by the considered classifiers. Each of the 

matrices of recognition results for elementary classifiers can be considered as a 

classification layer. Thus, for each pixel we get a vector of ambiguous decisions and select 

a specific decision. It is necessary to determine the relationship between different 

combinations of the classifiers’ outcomes, and the set of classes. Then, the decision is 

made in favor of the class for which the resulting combination of outcomes is the most 

likely. The results YΣ, obtained by joint statistical processing of SVM, LGR, MLP 

outcomes are presented in Fig. 4.19 and in Tables 4.12 – 4.14. 
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a. SVM, original image b. MLP, original image c. LGR, original image 

e. SVM, PSNR-HVS-M=30dB f. MLP, PSNR-HVS-M=30dB g. LGR, PSNR-HVS-M=30dB 

Figure 4.18 – Class recognition results 

a. layers convolution, original images b. logical convolution, PSNR-HVS-M=30 dB 

Figure 4.19 – Results of the classification 

Table 4.12 - Confusion matrices for original image 

Decisions Classes  

 Soil Grass Water Urban Bushes Pcorr 

Soil 0,978 0 0 0 0,022 

0,909 

Grass 5,97E-04 0,998 0 1,19E-04 1,35E-03 

Water 1,00E-03 0 0,989 0 0,01 

Urban 0,163 3,21E-04 0,018 0,713 0,106 

Bushes 0,293 0,013 0,04 5,18E-03 0,649 

 

Table 4.13 Confusion matrices for PSNR-HVS-M=36dB 

Decisions Classes  

 Soil Grass Water Urban Bushes Pcorr 

Soil 0,979 0 0 0 0,021 

0,873 
Grass 0,006 0,988 0 0,002 0,004 

Water 0,005 0 0,993 0 0,002 

Urban 0,19 0 0 0,625 0,185 

Bushes 0,455 0,016 0,039 0,003 0,487 
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Table 4.14 Confusion matrices for PSNR-HVS-M=30dB 

Decisions Classes  

 Soil Grass Water Urban Bushes Pcorr 

Soil 0,979 0 0 0 0,021 

0,853 

Grass 0,001 0,978 0 0,018 0,003 

Water 0,007 0 0,991 0 0,001 

Urban 0,289 0,001 0 0,683 0,026 

Bushes 0,552 0,05 0,034 0,017 0,347 

 

4.3.2 Lossy compression of multichannel remote sensing images with quality control 

 

In this Section, a dependence between classification accuracy of maximum likelihood 

and neural network classifiers applied to three-channel test and real-life images and quality 

of compressed images characterized by standard and visual quality metrics is studied. 

We consider the impact of lossy compression on multichannel RS image 

classification [103, 125, 142, 206, 211]. Specifically, we focus on the case of a limited 

number of channels, e.g., color, multi-polarization, or multispectral images, due to the 

following reasons: (a) it is simpler to demonstrate the effects that take place in images due 

to lossy compression and how these effects influence classification just for the case of a 

small number of image components; (b) an accurate classification of multichannel images 

with a small number of components is usually a more difficult task than the classification 

of hyper spectral data (images with a relatively large number of components) because of a 

limited number of available features and the necessity to reliably discriminate classes in 

feature space. 

As we need some metrics that should be good enough and applicable to single 

component images, we apply the metrics PSNR-HVS and PSNR-HVS-M.  

1) Considered Approaches to Multichannel Image Classification 

In this subsection, we consider two of them. The first one is based on the maximum 

likelihood method (MLM) [221, 222]and the second one relies on a neural network (NN) 

training [221]. In both cases, the pixel-wise classification are studied. There are many 

reasons behind using the pixel-wise approach and just these classifiers: (a) to simplify the 

classification task and to use only Q features (q = 1, . . . , Q), i.e., the values of a given 

multichannel image in each pixel; (b) to show the problems of pixel-wise classification; (c) 
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MLM and NN based classifiers are considered to be among the best ones [221].The note is 

that classifiers of RS data classification can be trained in different ways.  

A. Maximum Likelihood Classifier 

Maximum likelihood (ML) classification is based on several main principles. First, it 

is assumed that there is some feature space. For three-channel images, these features can 

be just pixel values and/or their ratios. It is also possible to exploit some texture features 

derived from a group of neighbor pixels. However, in this section, we consider the 

simplest version of the ML classification which is pixel-wise and employs only pixel 

values. Second, classification is based on preliminary training. At this stage, sample data 

for chosen classes are obtained and distributions for them are estimated or modeled. 

Decision rule is chosen. Then, the classifier is applied to RS images to be classified. 

B. NN Classifier Description 

We have chosen a simple but efficient NN for our application that can be easily 

implemented or placed on different platforms and devices. The employed classifier is an 

all-to-all connected perception combined with a self-organizing map to treat the obtained 

weights or probabilities of the pixel belonging to one of the classes.  

For NN training, we have taken 70% of the produced set, the other 30% of data is 

used for validation. The chosen architecture was NN with one hidden layer with a fully 

optimal number of training epochs equal to 50 for the given NN. The proposed classifier is 

easy to use, and it is fast. The overall training process was repeated 100 times with full 

permutation of the dataset and the obtained classifier has been applied to test images. 

2) Analysis of real-life three-channel images 

Our experiments with real-life images have been done using a three-channel Landsat 

TM image earlier used in our studies [53, 223]. This test image (shown in pseudo-color 

representation in Figure 4.20.a). The image fragments used in classifier training are shown 

in Figure 4.20.b whilst the pixel used for verification of classifiers are marked by the same 

colors in Figure 4.20.c. Details concerning the numbers of pixels are given in [53]. Class 1 

is marked by red color, Class 2—by green, Class 3—by dark blue; Class 4—by yellow, 

Class 5—by azure. 
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                                   a                                              b                                            c 

Figure 4.20 - The three-channel image, a) pseudo-color representation; b) pixel groups 

used for training; c) pixel groups used for verification.  

 

A. MLM Classifier Results 

Let us start by considering the results of applying the MLM classifier trained for the 

original image. Tables 4.16–4.19 present the obtained data in the form of confusion 

matrices. As it is seen, probabilities of correct classification for particular classes vary 

from 0,75 to 0,99 and the smallest probabilities take place for rather heterogeneous classes 

“Soil” and “Bushes". If the same classifier is applied to a compressed image (PSNR-HVS-

M=42 dB), the results are slightly worse (see data in Table 4.20). Reduction of 

probabilities of correct classification by 0,002 . . . 0,033 takes place. The largest reduction 

is observed for the most heterogeneous class “Bushes”. 

Consider now the data obtained if the MLM classifier is applied to the image 

compressed with visible distortions (PSNR-HVS-M = 36 dB). The confusion matrix is 

given in Table 4.21. Most probabilities of correct classification for particular classes 

continue to decrease although this reduction is not essential—up to 0,021 compared to the 

previous case (Table 4.20). Finally, let us analyze data for a compressed image (PSNR-

HVS-M = 30 dB) to which the MLM classifier has been applied. The data are presented in 

Table 4.22. The tendency is the same—most probabilities of correct classification for 

particular classes continue to decrease but, again, the reduction is not large. Classification 

maps for three images are presented in Fig 4.22. They are quite similar although some 

differences can be found. Compression does not lead to radical degradation of 

classification accuracy. 
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Table 4.19 - Classification probabilities for the MLM method trained for the original 

image and applied to it 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,747 0,027 0 0,037 0,189 

Grass 0,173 0,812 0 0,008 0,007 

Water 0 0 0,967 0 0,033 

Urban 0,004 0 0 0,989 0,007 

Bushes 0,091 0,068 0,013 0,016 0,812 

 

Table 4.20 - Classification probabilities for the MLM method trained for the original 

image and applied to the compressed image (PSNR-HVS-M=42dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,732 0,025 0 0,043 0,199 

Grass 0,177 0,808 0 0,008 0,006 

Water 0 0 0,963 0 0,037 

Urban 0,005 0 0 0,987 0,008 

Bushes 0,118 0,07 0,014 0,018 0,779 

 

Table 4.21- Classification probabilities for the MLM method trained for the original image 

and applied to the compressed image (PSNR-HVS-M=36dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,744 0,028 0 0,043 0,185 

Grass 0,185 0,799 0 0,009 0,007 

Water 0 0 0,959 0 0,041 

Urban 0,005 0 0 0,985 0,010 

Bushes 0,133 0,074 0,016 0,018 0,758 

 

Table 4.22 - Classification probabilities for the MLM method trained for the original 

image and applied to the compressed image (PSNR-HVS-M=30dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,724 0,026 - 0,044 0,206 

Grass 0,178 0,809 0 0,006 0,007 

Water - 0 0,942 0 0,058 

Urban 0,007 - 0 0,982 0,011 

Bushes 0,145 0,079 0,016 0,019 0,741 
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a                                   b                                               c 

Figure 4.22 - Classification results: a) for original image, b) for compressed image (PSNR-

HVS-M = 36 dB), c) for compressed (PSNR-HVS-M = 30 dB) 

For original image Pcc = 0,865; for compressed images it equals to 0,853, 0,854, 

0,853, 0,849, 0,842, and 0,839 for PSNR-HVS-M equal to 45, 42, 39, 36, 33, and 30 dB, 

respectively. So, it is possible to state that lossy compression providing PSNR-HVS-M 

about 40 dB does not lead to sufficient reduction of Pcc for the considered case. Moreover, 

if training is done for the image compressed with the same conditions as an image subject 

to classification, classification results can improve. For example, if training has been done 

for the compressed image (PSNR-HVS-M = 36 dB) and then applied to this image (to 

verification set of pixels), Pcc increases to 0,855. We have analyzed distributions of 

features before and after compression. One reason why Pcc does not radically reduce with 

CR increase is that the corresponding distributions do not differ a lot. The largest 

differences are observed for the classes “Soil” and “Bushes”. It might be slightly 

surprising that the class “Urban” is recognized so well. The reason is that, for the 

considered image, features for this class do not sufficiently overlap with features for other 

classes. 

B. NN Classifier Results  

The ideal case data (NN trained for original image is applied to the original image) 

are given in Table 4.23. The results can be compared to the data in Table 4.19. The NN 

classifier better recognizes the classes “Soil” and “Grass”, the results for the class “Water” 

are approximately the same. 
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Table 4.23 - Classification probabilities for the NN-based method trained for the original 

image and applied to it 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,950 0 0 0 0,05 

Grass 0 1 0 0 0 

Water 0 0 0,952 0 0,048 

Urban 0,098 0 0 0,767 0,135 

Bushes 0,187 0,09 0,02 0,009 0,774 

 

Table 4.24 - Classification probabilities for the NN-based method trained for the original 

image and applied to the compressed image (PSNR-HVS-M = 42 dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,942 0 0 0 0,058 

Grass 0 0,999 0 0 0,001 

Water 0 0 0,942 0 0,058 

Urban 0,01 0 0 0,765 0,136 

Bushes 0,207 0,016 0,018 0,009 0,751 

 

Table 4.25 - Classification probabilities for the NN-based method trained for original 

image and applied to the compressed image (PSNR-HVS-M = 36 dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,941 0 0 0 0,057 

Grass 0 0,999 0 0 0 

Water 0,001 0 0,919 0 0,059 

Urban 0,099 0 0 0,747 0,131 

Bushes 0,247 0,028 0,014 0,004 0,718 

 

Table 4.26 - Classification probabilities for the NN-based method trained for the original 

image and applied to the compressed image (PSNR-HVS-M = 30 dB) 

Class Probability of decision 

Soil Grass Water Urban Bushes 

Soil 0,941 0 0 0 0,059 

Grass 0 0,999 0 0 0,001 

Water 0,001 0 0,919 0 0,008 

Urban 0,099 0 0 0,747 0,153 

Bushes 0,247 0,028 0,014 0,004 0,707 
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Suppose now that this classifier (NN trained for the original image) is applied to 

compressed images. The results for different qualities of compressed data are presented in 

Tables 4.24–26. If PSNR-HVS-M is equal to 42 dB or 36 dB, the results keep practically 

the same. Only the probability of correct classification for “Bushes” steadily decreases. 

Reduction of classification accuracy occurs to be larger for the image compressed with 

PSNR-HVS-M equal to 30 dB. Mainly, reduction takes place for the classes “Water” and 

“Urban”. 

Some classification maps are presented in Figure 4.23. They do not differ a lot from 

each other. Some pixels that belong to the class “Water” for the narrow river (see the left 

low corner in Figure 4.23.c) “disappear” (become misclassified). This is because of the 

effects of smearing the prolonged objects due to lossy compression.  

 

 

 

 

 

 

 

a                                b                                  c 

Figure 4.23 - Classification results provided by NN-based method: a) for original image, b) 

for compressed image (PSNR-HVS-M = 36 dB), c) for compressed (PSNR-HVS-M=30dB) 

The MLM classifier training for compressed images was performed using training 

samples for fragments shown in Figure 4.23.b. Due to the usage of the same data for both 

training and validation, noticeable classification improvement can be observed (at least, 

for several classes). 

4) Brief Analysis for Sentinel-2 Three-Channel Images 

Concerning other images or their fragments, other imagers, and other compression 

techniques, we have taken three-channel images of the Kharkiv region (Ukraine) from 

Sentinel-2, in visible range acquired on 30 August 2019 when there were practically no 

clouds (images are available at https://apps.sentinel-hub.com/eo-

browser/?lat=46.45&lng=34.12&zoom=6&time=2019-11- 
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03&preset=3_NDVI&datasource=Sentinel-2%20L1C). The analyzed 512 × 512 pixel 

fragments are for the neighborhood of StaryiSaltiv (45 km north-east from Kharkiv, 

Ukraine, set 1) and north part of Kharkiv (set 2)—see Fig.4.24. The main reason for 

choosing these fragments is the availability of ground truth data that allow easy marking of 

four typical classes: Urban, Water, Vegetation, and Bare Soil. One more reason is that the 

image in Fig. 4.24.a is considerably less complex (textural) than the image in Fig 4.24.b.  

a b 

Figure 4.24 - Fragments of Sentinel-2 images of a)StaryiSaltiv, b) north part of Kharkiv  

First, these fragments have been compressed component-wise with providing a set of 

PSNR-HVS-M values using three coders: AGU, SPIHT [5], and Advanced DCT coder 

(ADCTC)[119]. Basic data on compression performance are given in Table 4.27. The 

observed dependences are predictable. CR for all coders increases if desired PSNR-HVS-

M reduces. CR values for different components for the same desired PSNR-HVS-M and 

set differ but not considerably. CR for AGU is usually slightly larger than for SPIHT (for 

the same conditions), ADCTC outperforms both coders. CR values for Set 2 images are 

several times smaller than for the corresponding Set 1 images due to the higher complexity 

of Set 2 RS data. 

Second, the classifier training has been performed and probabilities of correct 

classification for all four classes as well as the total probability of correct classification 

have been obtained. For the NN classifier and AGU coder, the data are presented in Tables 

4.28 and 4.29. Here and below the abbreviation SS1 means that classification has been 

done for an original (uncompressed) image 1 whilst, e.g., SS1_45 means that classification 
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has been done for the image compressed with providing PSNR-HVS-M = 45 dB. Training 

has been done for the original image. As one can see, compression results for the Set 1 

image practically do not depend on compressed image quality. Even for PSNR-HVS-M = 

30 dB the probabilities of correct classification are practically the same as for original data. 

Meanwhile, for the Set 2 image, the situation is another. There is a tendency for 

classification accuracy degradation if compressed image quality becomes worse. This is 

mainly due to the reduction of correct classification probabilities for more heterogeneous 

classes, e.g., vegetation. For this image, it is possible to recommend compression with 

providing PSNR-HVS-M about 42 dB to avoid considerable reduction of classification 

accuracy. 

Table 4.27 - CR comparison for real-life data for three coders, both sets. 

Color PSNR-HVS-

Mdes 

CR 

AGU SPIHT ADCTC 

Pseudo-Red, set 

1 

45,000 10,338 9,467 11,306 

39,000 18,383 16,631 20,362 

33,000 32,929 29,303 36,465 

Pseudo-Red, set 

2 

45,000 3,317 3,283 3,498 

39,000 4,520 4,762 4,886 

33,000 7,121 7,360 7,986 

Pseudo-Green, 

set 1 

45,000 7,179 5,957 7,513 

39,000 12,666 10,914 13,513 

33,000 23,907 20,833 26,030 

Pseudo-Green, 

set 2 

45,000 3,214 3,150 3,363 

39,000 4,356 4,564 4,684 

33,000 6,784 7,105 7,573 

Pseudo-Green, 

set1 

45,000 6,665 5,727 7,216 

39,000 11,942 10,336 12,740 

33,000 24,914 22,346 27,191 

Pseudo-Green, 

set1 

45,000 3,212 3,252 3,418 

39,000 4,314 4,698 4,785 

33,000 6,882 7,380 7,817 

 

We have also analyzed the possibility of using compressed images for training. The 

probability of correct classification has improved by about 0.01 for Set 1 image and 

remained practically the same for Set 2 image. Another part of our study relates to 

classification by MLM (the same maps have been used for training the NN and MLM). 

MLM has been applied to data compressed by three aforementioned coders. For the AGU 

coder, the obtained data are presented in Tables 4.30 and 31. 
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Table 4.28- Probabilities of correct classification depending on compressed image quality 

for Set 1, AGU coder, NN classifier 

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30 

Urban 0,774 0,777 0,775 0,777 0,778 0,773 0,786 

Water 0,998 0,998 0,998 0,999 0,999 0,999 0,998 

Vegetation 0,915 0,913 0,914 0,915 0,918 0,921 0,927 

Bare soil 0,809 0,811 0,809 0,809 0,812 0,798 0,801 

Ptotal 0,874 0,875 0,874 0,875 0,877 0,873 0,878 

 

Table 4.29 - Probabilities of correct classification depending on compressed image quality 

for Set 2, AGU coder, NN classifier 

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30 

Urban 0,877 0,872 0,871 0,865 0,861 0,861 0,864 

Water 0,654 0,659 0,662 0,661 0,654 0,644 0,647 

Vegetation 0,857 0,825 0,815 0,801 0,788 0,797 0,788 

Bare soil 0,890 0,867 0,865 0,869 0,866 0,860 0,870 

Ptotal 0,820 0,810 0,803 0,799 0,792 0,791 0,792 

 

Table 4.30. Probabilities of correct classification depending on compressed image quality 

for Set 1, AGU coder, ML classifier 

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30 

Urban 0,695 0,727 0,727 0,735 0,745 0,743 0,771 

Water 0,979 0,99 0,992 0,992 0,993 0,992 0,988 

Vegetation 0,9 0,896 0,896 0,895 0,899 0,901 0,902 

Bare soil 0,85 0,852 0,851 0,849 0,852 0,831 0,826 

Ptotal 0,856 0,866 0,866 0,868 0,892 0,867 0,872 

 

Table 4.31. Probabilities of correct classification depending on compressed image quality 

for Set 1, AGU coder, ML classifier 

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30 

Urban 0,917 0,914 0,913 0,913 0,91 0,913 0,918 

Water 0,923 0,902 0,893 0,885 0,873 0,873 0,857 

Vegetation 0,691 0,667 0,647 0,645 0,634 0,631 0,619 

Bare soil 0,856 0,819 0,815 0,817 0,812 0,802 0,812 

Ptotal 0,847 0,826 0,817 0,815 0,807 0,805 0,801 
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Table 4.32 - Probabilities of correct classification depending on compressed image quality 

for Set 1, SPIHT coder, ML classifier 

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30 

Urban 0,895 0,721 0,724 0,728 0,735 0,742 0,759 

Water 0,979 0,991 0,991 0,993 0,993 0,992 0,985 

Vegetation 0,9 0,899 0,901 0,9 0,904 0,908 0,906 

Bare soil 0,85 0,856 0,864 0,858 0,858 0,848 0,816 

Ptotal 0,856 0,866 0,87 0,87 0,872 0,873 0,867 

 

Table 4.33. Probabilities of correct classification depending on compressed image quality 

for Set 2, SPIHT coder, ML classifier 

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30 

Urban 0,917 0,915 0,915 0,917 0,916 0,92 0,924 

Water 0,923 0,918 0,913 0,903 0,892 0,884 0,875 

Vegetation 0,691 0,686 0,688 0.692 0,697 0,699 0,707 

Bare soil 0,856 0,847 0,858 0,853 0,853 0,861 0,859 

Ptotal 0,847 0,841 0,843 0,839 0,839 0,841 0,841 

 

Table 4.34 - Probabilities of correct classification depending on compressed image quality 

for Set 1, ADCTC coder, ML classifier 

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30 

Urban 0,695 0,723 0,725 0,734 0,736 0,751 0,76 

Water 0,979 0,992 0,994 0,995 0,995 0,995 0,995 

Vegetation 0,9 0,898 0,9 0,901 0,901 0,91 0,913 

Bare soil 0,85 0,863 0,855 0,85 0,864 0,84 0,827 

Ptotal 0,856 0,869 0,869 0,87 0,874 0,874 0,874 

 

Table 4.35. Probabilities of correct classification depending on compressed image quality 

for Set 2, ADCTC coder, ML classifier 

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30 

Urban 0,917 0,914 0,911 0,91 0,911 0,912 0,915 

Water 0,923 0,918 0,912 0,906 0,909 0,901 0,898 

Vegetation 0,691 0,647 0,688 0,682 0,664 0,67 0,693 

Bare soil 0,856 0,848 0,848 0,847 0,843 0,859 0,868 

Ptotal 0,847 0,838 0,84 0,836 0,832 0,836 0,844 

 



 

 

181 
 

It is seen that lossy compression leads to a positive effect for the Set 1 image. For all 

classes except Bare Soil, the probabilities of correct classification improve or remain the 

same. Total probability also improves and remains at approximately the same level for all 

considered qualities of the compressed image (Table 4.30). Meanwhile, for the Set 2 

image, larger CR leads to a steady reduction of total probability and decreasing of 

probabilities for most classes Table 4.31). We have also checked whether or not it is worth 

carrying out training for compressed images instead of uncompressed ones. The answer, as 

earlier, is yes. In particular, for images compressed with providing PSNR-HVS-M = 42 dB. 

The total probabilities equal to 0,893 for the Set 1 data and 0,858 for the Set 2 image. Thus, 

it is worth using those data in training that have been obtained with the same compression 

conditions as images subject to classification. Data obtained for the SPIHT coder are 

presented in Tables 4.32 and 4.33. Their analysis shows the following. Again, lossy 

compression has a small impact on the classification of the Set 1 data. An optimum is 

observed for PSNR-HVS-M about 40 dB. The impact of compression for the Set 2 data is 

also small. For some classes, probabilities of correct classification improve, for others 

become slightly worse. In aggregate, the total probability remains almost the same. 

Consider now the data obtained for ADCTC. They are presented in Tables 4.34 and 

4.35. Their analysis shows the same tendencies as those observed for the SPIHT coder. 

 

5) Discussion 

Above, we have considered tendencies for three real-life three-channel images 

presented as 8-bit 2D data for each component. In practice, images can be presented 

differently, for example, by 16-bit data [219]or by 10-bit data after certain normalization 

[224]. Then, a question arises how to provide the desired PSNR-HVS-M (e.g., 40 dB) for a 

given multichannel image to be compressed. To answer this question, let us consider some 

data. First, Fig.4.25 taken from [42]presents the dependences of PSNR-HVS-M on QS for 

nine 8-bit grayscale test images of different complexity for AGU. The average curve 

obtained for these nine test images is also given. It is seen that this average curve allows 

the approximate setting of QS to provide the desired PSNR-HVS-M. For example, to 
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provide PSNR-HVS-M ≈ 43 dB, one has to set QSrec≈ 15. To provide PSNR-HVS-M ≈ 40 

dB, it is possible to set QSrec ≈ 20. If D is not equal to 255, then the recommended QS is 

𝑄𝑆𝑟𝑒𝑐𝐷 =
𝑄𝑆𝑟𝑒𝑐𝐷

255
(4.23) 

where QSrec is determined from the average curve in Fig.4.25.  

As it follows from the analysis of data in Fig.4.25, the use of QSrec or QSrecD provides 

PSNR-HVS-M only approximately, errors can be up to 1 . . . 2 dB depending upon the 

complexity of an image to be compressed. Such accuracy can be treated as acceptable, 

since, as it is shown in the previous Section, change of PSNR-HVS-M by even 2 dB does 

not lead to radical changes of Pcc and probabilities of correct classification for particular 

classes. Second, if errors in providing the desired PSNR-HVS-M are inappropriate, 

accuracy can be improved by applying a two-step procedure proposed in [42]. As it has 

been shown in Table 4.15, QS that should be used in component-wise compression is 

practically the same for all components. This means that it is enough to determine QSrec or 

QSrecD for one component image and then apply it for compressing other components (this 

can save time and resources at the data compression stage). Moreover, QSrec or QSrecD 

determined according to recommendations given above can be used in joint compression 

of all components of multichannel images or groups of components [224]by the 3D 

version of AGU. In this case, the positive effect is twofold. First, a larger CR is provided 

compared to the component-wise compression. Second, a slightly larger quality of the 

compressed image can be ensured. Fig2.11.c demonstrates the dependences PSNR-HVS-

M on QS for different test images.  

In summary, in order to achieve safer efficiency in remote sensing images, acquired 

images (e.g., on-board) are subject to “careful” lossy compression in Quality Control 

Compression Unit where PCC (e.g., QS) is determined using the desired threshold for a 

chosen quality metric (e.g., 40 dB for PSNR-HVS-M) and rate/distortion curves obtained 

in advance (like those in Fig 2.11.c). PCC corrections can be done if, e.g., images are 

normalized before compression. Finally, classification or other operations on the RS data 

are allowed. 
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4.3.3 Lossy compression of the three-channel remote sensing images with controllable 

quality 

 

In this section, we test whether it is possible to control quality for 3D compression. 

Compared to component-wise compression, 3D approach leads to two important benefits: 

1) compression ratio can be almost twice larger; 2) probability of correct classification can 

be slightly better. These benefits are confirmed for real-life three-component data acquired 

by Sentinel sensor using maximum likelihood-based classifier. 

1) Used coders, quality metrics, and classification  

There are numerous lossy compression techniques proposed so far. Some of them can 

be applied only component-wise, other are specially designed for three-dimensional (3D) 

case, i.e. for color and multichannel images. In addition, advanced methods usually exploit 

inter-channel correlation of data inherent for multichannel images[209]to improve 

compression ratio without losing image quality [110, 218, 219]. Consequently, it is worth 

analyzing is the 3D version of AGU able to provide them simultaneously with one more 

benefit – providing of a larger CR compared to component-wise processing. Note that 3D 

AGU performs 1D three-point DCT to decorrelate data as preliminary operation before 2D 

compression of obtained data. Decompression is performed in reverse order. 

In this Section, we consider the simplest version of ML classification [54] which is 

pixel-wise and employs only pixel values. Second, classification is based on preliminary 

training. At this stage, sample data for chosen classes are obtained and distributions for 

them are estimated or modeled. Decision rule is chosen. Then, the classifier is applied to 

RS images to be classified. 

To describe a class of spectral features, we have applied histogram approximation by 

Johnson SB-distribution [225] that has four adjustable parameters that allow performing 

approximation quite accurately. Four classes are supposed to be present in RS data, 

namely, Water, Vegetation, Bare Soil, and Urban. Training samples are of size from 4000 

to 20000 pixels. Verification samples have by several times larger sizes. Examples of 

images to be compressed and classified are given in Fig. 4.25. These are three-channel 

Sentinel-2 multispectral data in color representation. These are images of Kharkov 
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(Ukraine) and country-side region near it collected at the end of August 2019. Both 

fragments are of size 512x512 pixels. The examples are selected to represent simple 

structure (a) and complex-structure (b) RS data. 

a b 

Figure 4.25. Fragments of the considered three-channel images for a) country-side and b) 

urban regions 

2) Characteristics of the considered coders 

First, let us analyze the conventional performance characteristics for component-wise 

and 3D compression, i.e., dependence of CR and PSNR-HVS-M on QS. Since 

performance depends on image complexity, data for both image fragments in Fig. 4.25 are 

given in Tables 4.34 and 4.35, respectively. 

Analysis of data in Tables 4.34 and 4.35 allows concluding the following: 1) CR 

really depends not only on QS, but on image complexity; for the same QS, CR is about 

two times larger for the simpler structure image (Table 4.34) than for highly textural 

image (Table 4.35); 2) CR and PSNR-HVS-M are quite close for a given QS for all three 

components for the case of component-wise compression of three-channel images: 3) CR 

for 3D compression for a given image and given QS is almost two times larger than for the 

component-wise compression (where CR is approximately equal to CR averaged for three 

components); 4) PSNR-HVS-M for a given QS for 3D and component-wise compression 

are almost equal as well; this means that methodology of QS setting for providing a 

desired quality earlier designed for component-wise (grayscale) image compression [54] is 



 

 

185 
 

valid for the 3D case as well; in particular, to provide lossy compression at the threshold 

of distortion invisibility (about 41 dB), it is necessary to set QS about 17.  

Table 4.34 - Performance characteristics for 3D and component-wise compression of the 

image fragment in Fig 4.25.a 

QS  3D compression Red component Green component Blue component 

CR PSNR-HVS-

M 

CR PSNR-

HVS-M 

CR PSNR-

HVS-M 

CR PSNR-

HVS-M 

5 6,49 51,0 5,3 51,8 4,1 52,8 3,4 53,5 

10 12,34 44,5 8,48 45,9 6,93 45,6 5,82 45,5 

15 18,51 41,1 11,37 42,7 9,53 41,8 8,37 41,2 

20 25,33 38,9 14,15 40,4 12,01 39,4 10,84 38,4 

25 32,36 37,6 16,92 38,5 14,41 37,4 13,39 36,4 

30 39,95 35,9 19,54 36,9 16,88 35,9 16,03 34,8 

35 47,94 34,8 22,14 35,7 19,35 34,5 18,59 33,5 

 

Table 4.35 - Performance characteristics for 3D and component-wise compression of the 

image fragment in Fig 4.25.b 

QS  3D compression Red component Green component Blue component 

CR PSNR-

HVS-M 

CR PSNR-

HVS-M 

CR PSNR-

HVS-M 

CR PSNR-

HVS-M 

5 3,41 51,9 2,30 53,9 2,14 55,5 2,21 53,9 

10 5,65 44,9 3,14 47,3 2,89 47,2 3,02 46,7 

15 8,43 41,1 3,93 43,5 3,62 42,7 3,78 32,8 

20 11,62 38,6 4,71 40,5 4,39 39,5 4,52 40,0 

25 14,41 36,8 5,55 38,2 5,22 37,2 5,30 37,8 

30 17,33 35,4 6,42 36,4 6,10 35,3 6,13 36,0 

35 20,39 34,3 7,39 34,7 7,07 33,8 7,02 34,5 

 

a b 

Figure 4.26 - Test image compressed in a) 3D and b) component-wise manner  
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Thus, for a given QS, there is visually no essential difference between images 

compressed in 3D and component-wise manner. To prove this, Fig. 4.26 shows 

compressed images for QS=20 (for the image in Fig. 4.25.b). 

Some minor differences compared to the image in Fig. 4.25.b can be noticed, but, in 

general, visual quality of images in Fig. 4.26.a and 26.b is of the same order. Meanwhile, 

it may be interesting to know if these differences affect the accuracy of the three-channel 

classification by the ML classifier. 

3) Classification results 

As it has been already mentioned, the first stage is the ML classifier training. Fig. 

4.27.a illustrates the parts of the test image in Fig. 4.26. a that have been used as training 

samples. Here blue color corresponds to Water, green – to Vegetation, black – to Bare 

Soils. Yellow – to Urban. Fig. 4.26.b shows the image fragments for which verification 

characteristics have been determined. As one can see, there is no coincidence between 

fragments employed in training and verification.  

To provide equal conditions for comparison of classification results for component-

wise and 3D compression, we have obtained images with quality characterized by PSNR-

HVS-M equal to 45, 42, 39, 36, 33, and 30 dB. Confusion matrix have been obtained for 

each case to seen transformations happening for each class and their pairs. Let us present 

some examples of the obtained results.  

The confusion matrix for the fragment in Fig. 4.25.a is given in Table 4.36, for the 

fragment in Fig.4.25.b – in Table 4.37 (in other words, the classification has been carried 

out for original (uncompressed) data). As one can see, a simpler structure image is, in 

general, classified better. Urban is a wide class which is misclassified in the largest extent. 

Bare Soil class is not detected well too. 

Table 4.36 - Confusion matrix for the fragment in Fig. 4.25.a 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,883 1,24E-03 0,031 0,084 

Water 1,69E-03 0,997 1,42E-03 0 

Vegetation 1,36E-03 0,051 0,911 0,037 

Bare soil 0,303 0 6,28E-04 0,696 
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a 

 
b 

Figure 4.27. Fragments used for a) training and b) verification  

Table 4.37 - Confusion matrix for the fragment in Fig.4.25.b 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,423 2,30E-02 0,177 0,377 

Water 2,60E-02 0,863 9,20E-02 0,018 

Vegetation 7,21E-03 2,20E-02 0,97 6,18E-04 

Bare soil 0,174 6,47E-03 0,044 0,775 

 

Table 4.38. Confusion matrix for the fragment in Fig. 4.25.a compressed component-wise 

with providing PSNR-HVS-M equal to 39 dB 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,891 7,71E-04 0,03 0,078 

Water 2,09E-03 0,995 3,07E-03 0 

Vegetation 9,04E-04 0,029 0,965 5,44E-03 

Bare soil 0,282 0 6,28E-04 0,717 

 

 

Table 4.39. Confusion matrix for the fragment in Fig. 4.25.a compressed by 3D coder with 

providing PSNR-HVS-M equal to 39 dB 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,90 1,63E-03 0,026 0,072 

Water 1,90E-03 0,997 1,50E-03 0 

Vegetation 4,72E-04 0,019 0,978 2,79E-03 

Bare soil 0,178 0 7,07E-04 0,821 
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Data in Tables 4.38 and 4.39 are confusion matrices for the case PSNR-HVSM-39 dB 

for two ways of lossy compression for the image shown in Fig. 4.25.a. 

As one can see from comparison of data in Tables 4.36 and 4.38, the compressed 

image is classified even better than the original one. Comparison of data in Table 4.39 to 

the corresponding data in Tables 4.36 and 4.38 shows that the image compressed by the 

3D coder is classified better than for two previous cases. Note that CR for 3D compression 

is about 25 whilst for component-wise compression CR is about 13. Thus, we have two 

benefits for 3D compression for the considered case – a considerably larger CR and a 

noticeably better classification.  

Let us present some classification examples. Fig. 4.28.a shows classification results 

for the original (uncompressed) image. Figures 4.28.b, 4.28.c, and 4.28.d present 

classification results for images compressed with providing PSNR-HVS-M equal to 42 dB 

(invisible distortions), 36 dB (visible distortions), and 30 dB (sufficient distortions). As 

one can see, some separate class pixels are lost if CR increases (and image quality 

reduces). Meanwhile, classification results for the original image and the image 

compressed with invisible distortions (see classification maps in Figures 4.28.a and 4.28.b) 

are quite similar. 

It can be also interesting to analyze aggregate probabilities of correct classification. 

They are equal to 0,872, 0,914, 0,931, and 0,948, respectively. It is possible to compare 

these probabilities to the case of component-wise compression. The probabilities are equal 

to 0,891, 0,891, and 0,885 for images compressed with PSNR-HVS-M equal to 42, 36, and 

30 dB, respectively. In other words, probability of correct classification for all compressed 

images is higher than for the original one although the training has been done for the 

original image. Meanwhile, classification of the images compressed in 3D way is more 

efficient.  

Consider now the results for another test image (Fig. 4.25.b). Confusion matrices for 

this image compressed with PSNR-HVS-M=39 dB are given in Tables 4.40 and 4.41 for 

the cases of component-wise and 3D compression. 
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a 

 
b 

 
c 

 
d 

Figure 4.28 - Classification results, a) original image, b) compressed images with PSNR-

HVS-M=42 dB, c) PSNR-HVS-M=36 dB (c), and PSNR-HVS-M=30 dB (d) 

 

Table 4.40 - Confusion matrix for the fragment in Fig.4.25.b compressed component-wise 

with providing PSNR-HVS-M equal to 39 dB. 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,463 0,021 0,147 0,369 

Water 0,06 0,793 0,132 0,016 

Vegetation 3,17E-03 4,25E-03 0,992 2,83E-04 

Bare soil 0,201 4,80E-03 0,045 0,749 

 

Table 4.41. Confusion matrix for the fragment in Fig. 4.25.b compressed by 3D coder with 

providing PSNR-HVS-M equal to 39 dB. 

Class 
Probability of Decision 

Urban Water Vegetation Bare soil 

Urban 0,406 0,027 0,165 0,401 

Water 0,022 0,793 0,165 0,019 

Vegetation 0,022 0,018 0,96 4,38E-04 

Bare soil 0,181 3,40E-03 0,043 0,773 
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The choice of these images for comparison is due to their different statistical 

characteristics, in particular, the type and complexity of textures, the number of small-

sized objects, etc. Considering these differences, compression algorithms have different 

effects on the classification results. For the image in Fig. 4.25.a with a relatively simple 

structure, which represents mainly area objects, compression leads to the suppression of 

high-frequency spatial noise, which can improve the classification accuracy. If the image 

contains many linear and small-sized objects, as, for example, in Fig. 4.25.b, then 

compression can lead to a decrease in the reliability of their recognition. 

As one can see, there are certain differences for data in Tables 4.37, 4.40, and 4.41. In 

this case, the results for 3D compression are slightly worse. Compare the aggregate 

probabilities of correct classification. They are equal to 0,758, 0,731, 0,726, and 0,715 for 

the original image and the images compressed by 3D coder with providing PSNR-HVS-M 

equal to 42, 36, and 30 dB, respectively. If component-wise compression is applied, the 

probabilities are equal to 0,747, 0,753, and 0,754 for images compressed with PSNR-

HVS-M equal to 42, 36, and 30 dB, respectively. In other words, probability of correct 

classification for all compressed images is smaller than for the original one. Classification 

of the images compressed in 3D way is less efficient. To avoid sufficient reduction of 

aggregate probability of correct classification, it is worth providing PSNR-HVS-M not less 

than 36 dB. 

It might be interesting to consider the classification results for separate classes. Table 

4.42 and 4.43 give data for the image in Fig. 4.25.a for component-wise and 3D 

compression, respectively. Abbreviation 1a_45 means that the image has been compressed 

with providing PSNR-HVS-M=45 dB. Dependences for classes are different. The class 

Urban is recognized slightly better for the compressed images. Detection of Water 

becomes slightly worse if CR increases and image quality reduces. The class Vegetation is 

considerably better recognized in the compressed images. The class Bare Soil is 

recognized with approximately the same probability of correct classification for 

component-wise compression but it is better recognized in the compressed images for the 

case of 3D compression. Tables 4.44 and 4.45 present probabilities of correct 

classification for the image in Fig. 4.25.b. 
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Table 4.42 - Probabilities of correct classification for classes and aggregate for the test 

image in Fig. 4.25.a compressed component-wise 

Classes Original 1a_45 1a_42 1a_39 1a_36 1a_33 1a_30 

Urban 0,883 0,89 0,89 0,891 0,892 0,894 0,893 

Water 0,997 0,996 0,996 0,995 0,994 0,992 0,990 

Vegetation 0,911 0,955 0,961 0,965 0,972 0,978 0,984 

Bare soil 0,696 0,715 0,716 0,717 0,705 0,698 0,675 

Ptotal 0,872 0,889 0,891 0,892 0,891 0,891 0,885 

 

Table 4.43- Probabilities of correct classification for classes and aggregate for the test 

image in Fig. 4.25.a compressed in 3D manner 

Classes Original 1a_45 1a_42 1a_39 1a_36 1a_33 1a_30 

Urban 0,883 0,894 0,896 0,90 0,908 0,919 0,938 

Water 0,997 0,996 0,996 0,997 0,997 0,997 0,994 

Vegetation 0,911 0,965 0,97 0,978 0,981 0,989 0,994 

Bare soil 0,696 0,769 0,793 0,821 0,839 0,87 0,866 

Ptotal 0,872 0,906 0,914 0,924 0,931 0,944 0,948 

 

Table 4.44- Probabilities of correct classification for classes and aggregate for the test 

image in Fig. 4.25.b compressed component-wise 

Classes Original 1b_45 1b_42 1b_39 1b_36 1b_33 1b_30 

Urban 0,423 0,437 0,448 0,463 0,486 0,499 0,509 

Water 0,863 0,81 0,799 0,793 0,783 0,774 0,764 

Vegetation 0,97 0,99 0,992 0,992 0,993 0,994 0,994 

Bare soil 0,775 0,754 0,75 0,749 0,751 0,753 0,751 

Ptotal 0,758 0,748 0,747 0,749 0,753 0,755 0,754 
 

 

Table 4.45. Probabilities of correct classification for classes and aggregate for the test 

image in Fig.4.25.b compressed in 3D manner 

Classes Original 1b_45 1b_42 1b_39 1b_36 1b_33 1b_30 

Urban 0,423 0,431 0,418 0,406 0,396 0,379 0,367 

Water 0,863 0,816 0,798 0,793 0,771 0,744 0,749 

Vegetation 0,97 0,931 0,943 0,96 0,97 0,974 0,97 

Bare soil 0,775 0,764 0,765 0,773 0,766 0,766 0,773 

Ptotal 0,758 0,736 0,731 0,733 0,726 0,716 0,715 
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Here, i.e., abbreviation 1b_42 means that the image in Fig. 4.25.b has been 

compressed with providing PSNR-HVS-M=42 dB. Dependences for classes and 

compression methods are different. The class Urban is recognized slightly better for the 

images compressed component-wise (Table 11) but worse for 3D compressed images 

(Table 4.45). Water classification becomes worse if CR increases and image quality 

reduces for both compression techniques. The class Vegetation is better recognized in the 

images compressed component-wise. If 3D compression is applied, classification accuracy 

is approximately at the same level. The class Bare Soil is better recognized in images 

compressed in 3D manner. In general, probability of correct classification for this class is 

almost the same as for original data.  

 
a 

 
b 

 
c 

 
d 

Figure 4.29 - Classification results for original (a) and compressed images with PSNR-

HVS-M=39 dB for component-wise (b) and 3D (c) compression, and for the image 

compressed with PSNR-HVS-M=30 dB (d) in 3D manner 
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We would like to present some classification maps for the image in Fig. 4.25.b. Fig. 

4.29.a represents the classification map for original image. Figures 4.29.b and 4.29.c show 

the classification results for images compressed with providing PSNR-HVS-M=39 dB for 

component-wise and 3D manners, respectively. Finally, Fig.4.29.d present the map for the 

image compressed in 3D manner with providing PSNR-HVS-M=30 dB, i.e. with sufficient 

distortions. As one can see, the results in Figures 4.29.a, 4.29.b, and 4.29.c are quite 

similar whilst some details are lost for the classification map in Fig. 4.29.d. Meanwhile, 

since we know this region well, it is possible to state that there are quite many cases when 

asphalt roads, clearings in the forest and shadows are classified as bare soil. So, in fact, 

more classes could be used in analysis. The problem is that a limited number of pixels 

relate to these classes and it is quite difficult to carry out training for them. 

With pixel-wised statistical classification, recognition errors are inevitable if 

distributions describing different classes intersect. Compression leads to some blurring of 

the image, the appearance of noise halos around the sharp edges of objects, color noise, 

therefore, the original distributions of class features change their shape. In turn, this affects 

the classification results. In general, more compression of a complex-structure image leads 

to a decrease in total probability of correct classification. It can be noted that for such 

classes as Urban and Vegetation for the test image in Fig. 4.25.b compressed component-

wise, the classification accuracy increases, presumably due to smoothing of in 

homogeneities. 

 

4.4 Conclusion 

 

In this chapter, methods for providing desired visual quality values in lossy 

compression are extended. Remote sensing images, including multichannel ones, are 

studied more thoroughly. 

First, an automatic optimization method for the BPG coder for color images has been 

proposed for the classic metric PSNR and the HVS-based metric PSNR-HMA.A 

comparison of decompressed images shows that the use of the metric PSNR-HMA is 
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preferable since it takes into account peculiarities of human perception of images better. If 

the error is less than a certain value (e.g., 0,5dB), the procedure quits automatically. 

Second, the improved two-step compression method is utilized to compress three-

channel remote sensing images. An analysis is carried out for two visual metrics, FSIM 

and MDSI, which are highly correlated with human subjective scoring results. Three 

visual quality levels have been proposed corresponding to the MDSI values appropriate for 

excellent quality, good quality, as well as middle and bad quality, respectively. It has been 

demonstrated that the two-step procedures work well for the aforementioned metric, 

providing improvement of accuracy by one order of magnitude for the second step 

compared to the first one. 

Finally, the effect of controlling visual quality on remote sensing data classification is 

studied. Analysis of classification accuracy is performed for the overall probability of 

correct recognition of classes in the real satellite images compressed with AGU coder, 

including both component-wise version and 3D version. It is shown that possible to 

control quality for 3D AGU compression to obtain considerably (by about two times) 

higher CR and a better probability of correct classification than in the component-wise 

case. The results show that classification accuracy usually starts to decrease faster when 

compressed image quality due to CR increasing reach the distortion visibility threshold 

that can be characterized by PSNR-HVS-M. There is no sufficient decrease in 

classification accuracy if images are compressed without visible distortions. These 

conclusions are drawn based on experiments performed for Landsat and Sentinel RS data. 
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CONCLUSION 

 

The dissertation research solves several actual tasks related to the development of 

efficient methods of lossy compression, which are focused on providing a desired visual 

quality for decompressed image that impacts image perception and/or further image 

processing. However, the analysis of the existing methods of quality (introduced distortion) 

control shows that the accuracy of quality providing and time efficiency are difficult to 

balance. In this regard, there is an urgent need to predict the quality of decompressed 

images and calculate appropriate CCP at a reasonable time cost to guarantee the distortion 

introduced by lossy compression does not influence the further image processing or 

terminal user’s perception.  

According to the results of the dissertation, we can draw the following conclusions: 

1. Analysis of the requirements for the lossy compression techniques, shows that fast 

compression and high compression ratios are generally desired. Meanwhile, distortion 

control is very important, even primary. 

It has been shown that how much loss can be allowed is application-dependent, but 

no matter what, the distortions are desired to be controlled carefully. Moreover, selection 

of the image quality metric is also important since different metrics use different HVS 

models, so that the reliability of the indication of image quality based on different final 

tasks is also different. 

2. The method of predicting the visual quality for lossy compression has been 

improved for AGU coder, and extended to SPIHT coder. It has facilitated a fast and 

considerably better parameter setting.  

3. The two-step lossy compression method is developed for gray-scale images to 

provide a desired visual quality. The experiments conducted for AGU coder and BPG 

coder showed that the two-step method could achieve a balance between accuracy and 

time efficiency and only requires at most two compressions and one decompression to 

achieve appropriate accuracy.  

The performance of method for the BPG coder is better than for AGU, particularly in 

terms of the metric PSNR, the variances of the former are about 1/4 ~1/10 of the latter. For 
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BPG, even a single step can meet the accuracy requirements according to the metrics 

PSNR and PSNR-HVS-M for some images. 

4. The two-step method for gray-scale images to avoid the occurrence of parameter 

“over-correction” has been proposed and it has ensured the positive effect of parameter 

correction in the second-step compression on visual quality error control, thus extending 

the use of the two-step method to the DCT-based ADCT coder and the DWT-based SPIHT 

coder. Besides, the pre-classification and composite schemes were adopted to further 

improve the accuracy of the two-step method. For the SPIHT encoder, the overall variance 

drops by 45%. 

5. Extension of the method on BPG coder for providing desired visual quality to color 

images and remote sensing images, including multichannel ones has been done. It has 

been shown that the HVS-based metric PSNR-HMA is more reliable than PSNR. 

Moreover, the result according to the other two metrics, namely FSIM and MDSI, which 

are highly correlated with human subjective scoring results, were analyzed. For the first 

time, three visual quality levels have been proposed corresponding to the MDSI values 

appropriate for excellent quality, good quality, as well as middle and bad quality. 

6. The effect of controlling visual quality on remote sensing data classification has 

been studied; the overall classification accuracy and probability of correct recognition of 

class have been analyzed for real satellite images compressed with AGU coder, including 

both component-wise version and 3D version. It has been shown that it is possible to 

control quality for 3D AGU compression to obtain considerably higher CR and a better 

probability of correct classification than in the component-wise case. The results also 

show that classification accuracy usually starts to decrease faster when compressed image 

quality due to CR increasing reaches the distortion visibility threshold that can be 

characterized by PSNR-HVS-M. There is no sufficient decrease in classification accuracy 

if images are compressed without visible distortions (PSNR-HVS-M exceeds 40 . . . 42 

dB). Thus, providing the desired visual quality in remote sensing image compression can 

maximize the compression ratio without compromising classification accuracy. 
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