UDC 004.622: 517.927

. V. BRYSINA, V. 0. MAKARICHEV

N. Ye. Zhukovsky National Aerospace University “Kharkiv Aviation Institute ”, Ukraine

ATOMIC FUNCTIONS AND THEIR GENERALIZATIONS IN DATA PROCESSING:

FUNCTION THEORY APPROACH

The atomic function is solutions with a compact support of the linear functional differential equations with
constant coefficients and linear transforms of the argument. The atomic function theory was created in the 70's
of the 20th century due to the necessity to solve different applied problems, in particular, boundary value prob-
lems. One of the reasons for the appearance of atomic functions and some other classes of functions was the
inability to apply such classic approximation tools as algebraic and trigonometric polynomials. V.A. Rvachev
up-function is the most famous and widely applies atomic function. The development of technologies changes
the existing problems and fundamentally new problems appear. Nowadays big data processing is one of the
most important problems. It should be mentioned that suitable mathematical tools must be applied to obtain
the desired result. This paper is devoted to the fundamentals of applications of some atomic functions and their
generalizations in data processing and data reduction. In this paper, we consider the main properties of these
functions from the function theory point of view and give their interpretation with respect to information pro-
cessing. Smoothness, compact support, and good approximation properties are the main advantages of atomic
functions. Moreover, the spaces of atomic functions and the spaces of generalized Fup-functions, which are the
natural generalization of V.A. Rvachev Fup-functions, are asymptotically extremal for the approximation of
periodic differentiable functions. This means that in the terms of A.N. Kolmogorov width these functions are
just as effective as classic trigonometric polynomials {1, cos(nx), sin(nx)}. Hence, the replacement of discrete
transforms based on trigonometric functions on similar transforms based on atomic functions and generalized
Fup-functions is quite promising. For this purpose, we introduce discrete atomic transform and generalized
discrete atomic transform. We also discuss the dependence of data processing results on order of smoothness
and size of support of the applied functions. The theoretical justification of the application of some atomic
functions and generalized Fup-functions to data processing and, in particular, data reduction is the main re-
sult of this paper.

Keywords: data processing; data compression; atomic functions; up-function; Fup-function; generalized Fup-
function; discrete atomic transform; generalized discrete atomic transform.

cant number of totally new problems. Processing of big
data is one of them.
It is well-known that complexity and efficiency of

Introduction

Theory of atomic functions appeared in the 70’s of

the 20™ century because of necessity to solve different
applied problems, especially boundary value prob-
lems [1]. The first atomic function is V. A. Rvachev up-
function

1% . sin(t-2’k)

up(x) = — .[ e'txH—_kdt.

2n i R
This function is the most famous and widely used atom-
ic function. Later many other different atomic functions
were constructed and investigated. One of the reasons
for the appearance and further development of atomic
functions and some other classes of new functions was
the inability to use in numerical methods such classic
constructive tools as trigonometric and algebraic poly-
nomials [1].

Now fundamentally new technical capabilities

have been created and science community has a signifi-

algorithms of big data sets processing depend on proper-
ties of used mathematical tools. Atomic functions com-
bine a huge number of convenient properties. For this
reason they have many different applications (note that
a list of current application is presented in [4]; also
comprehensive survey, which was actual at the time of
writing, can be found in [5]). It should be mentioned
that at the current time atomic functions are mostly used
as a tool for analysis of functions of real or complex
variables. But now data is often discrete (for example,
digital image is a matrix). Therefore, it is the develop-
ment of algorithms for discrete data processing that is
one of the most important problems. Hence, the follow-
ing question is quite natural: is it rational to use atomic
functions in processing of discrete data? In this paper
we get an answer on this question. For this purpose the
following approach is used: we consider the main prop-
erties of some atomic functions and their generalizations



from the function theory point of view and obtain the
interpretation with respect to information processing.
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Fig. 1. The graph of up-function and its derivative
Formulation of the problem

Consider the space of up-function shifts

UP, :{(p(x): (p(x)=chup(x—2£nj}, n=012,....
k

Approximation properties of these spaces were investi-
gated in [1 - 3]. It was also shown that in the space UP,

there exists a basis that consists of translates of the func-
tion

1% i sin(tZ‘”‘l) ”F[ t jdt

Fup,(x)=— 1 € —
p”() ZR_I t27n71 on

where F(t) is the Fourier transform of up(x) with a

local support.
These results were generalized in [12] for the case
of spaces

k
UP,, =5¢: ¢(X)=) CUpsp| X— ,
{ ZEPan [ X
where s=2,3,4,..., n=0,1,2,... and

o sin® (st(Zs)_k)
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dt.
ko1S2 (25)"‘ sin (t(Zs)‘k )

In particular, it was proved that shifts of the function
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where K (t) is the Fourier transform of upg(x), consti-
tute a basis of the space UP; .
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Fig. 2. The graph of up,(x) and its derivative

Consider the function

1 % [ sin(t/N)Y™H
f X)=— [ ™| "~ F(t/ N)dt,
N0 =5 | (t,N] (t/N)

where F(t) is the Fourier transform of the positive even
function f(x)elL,(U) with a support

supp f(x) =[-11], jif(x)dx:l, N=0 and mel .
The function fy,(x) is called generalized Fup-

function and f(x) is its mother function [6, 7].

Generalized Fup-function is a natural generaliza-
tion of V. A. Rvachev Fup-functions and Fup , (X).

It follows from [1 -3, 6 — 8] that UR,,, UP;, and

the spaces of generalized Fup-functions shifts combine
the following advantages:

1) these spaces are asymptotically extremal for ap-
proximation of periodic differentiable functions;



2) the spaces UP, are extremal for approximation

of periodic differentiable functions;

3) these spaces have a locally supported bases;

4) elements of these spaces have high order of
smoothness.

This implies that atomic functions up(x), ups(X)
and generalized Fup-functions are convenient for appli-
cations, in particular, for construction of different nu-
merical methods. In other words, from function theory
point of view these functions are excellent mathematical
tools.

The aim of this paper is to prove the efficiency of
up(x), ups(x) and generalized Fup-functions in dis-

crete data processing.

Discrete data transform

The spaces of atomic functions and generalized
Fup-functions can be easily used for representation of
real or complex variable functions. Let us introduce the
following scheme of discrete data representation.

We consider the case of one-dimensional of real-
valued data.

Let D={dg,dy,...,dyy} be some data. The value

of d; can be the result of measuring a certain indicator.
For example, d; is the temperature or the exchange rate
at the i-th moment in time.

Let us construct the function d(x) such that the
data D is a set of values of this function. For this pur-
pose it is sufficient to construct the scale of the inde-
pendent variable X.

By [a,b] denote some segment. Let x; =a+i-h,
where h=(b—-a)/M and i=0,1,...,M.

Further, denote by L the space of atomic functions
UP, or UF; .

Finally, let the system of functions {(pj (x)} be a

basis of the space L.
Using classic decomposition procedure, we can
find the function

d(x) = > ox@x (%) o))
K

such that
d(x;)=d @
forany i=0,1,...,M.
Note that the set of atomic coefficients Q = {wy }

uniquely identifies the data set D = {dj} :

In this way we construct the procedure for the
transformation of some discrete data D into atomic
coefficients Q. We call this procedure the discrete

atomic transform (DAT) and the set of coefficients the
DAT-coefficients. If L is a space of generalized Fup-
functions, we call this procedure the generalized dis-
crete atomic transform.

It is obvious that the basis {(pj (x)} of the linear

space L can be chosen in different ways. The simplest
approach is to choose atomic wavelets or generalized
atomic wavelets, which were constructed in [4, 9 — 11],
as a basis. In this case we get wavelet expansion of the
discrete data D.

In the same way we can construct DAT-procedure
and generalized DAT-procedure for representation of
complex-valued and multi-dimensional discrete data D .

Dependence of data processing complexity
on the support of the basic functions

In the previous section we introduced the special
numerical scheme that can be used for discrete data pro-
cessing. It is evident that the following questions are of
particular interest:

1) what is the complexity of DAT and generalized
DAT procedures?

2) what is the complexity of algorithm for obtain-
ing initial data?

It is obvious that complexity of these algorithms
principally depends on the properties of the basis

{9;(0}-
Existence of the locally supported basis in the
spaces of atomic functions and generalized Fup-

functions is a convenient feature of these spaces. For
instance,

n+2 n+2} 3

Supp Fupn (X) - |:_ 2n+l ! 2n+l

and the system of functions

{Fupn [X_2k+ln ]} @
2r|+ K

is a basis of the space UP, [1, 3];

n+2n] n+2n} 5)
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constitutes a basis in the space UP; , [12];

supp Fups o (x) = {—

and the system

finally,

m+2 m+2
supp iy m (X) =[— NN } ()
and spaces of these generalized Fup-functions have a
basis



2k+m
{fN,m (X - N )}k (8)

(actually, the spaces of generalized Fup-functions are
constructed as a linear span of the system (8) [8]).

To obtain DAT-coefficient Q we put x=x; for
i=0,1...,N in expansion (1). Using (2), we get the
system of linear algebraic equations. If (4), (6) or (8) is
a basis of the space L, then it follows from (3), (5) and
(7) that matrix of this system is band. Hence, complexi-
ty of solution is O(M). In other words, the algorithm of

transform of D into the coefficients Q has linear com-
plexity in the size of initial data. This means that DAT
and generalized DAT procedures have linear com-
plexity in the size of data. By the same argument,
complexity of the inverse procedure is also linear.
Indeed, to obtain the value d; we should put x =X; in

(2). From (3), (5) and (7) it follows that the most part of
the terms on the right side of equality (1) is equal to
zero. So, we need to calculate the sum of several terms.

If we choose atomic wavelets or generalized atom-
ic wavelets as a basis of the linear space L, we obtain
just the same situation. It was shown in [4, 9 - 11] that
these wavelets are locally supported functions. There-
fore discrete atomic transform and generalized atomic
transform of the data D into the coefficients Q have
linear complexity. Also, the inverse procedures are the
algorithms with a linear complexity.

Processing of multi-dimensional data using atomic
functions and their generalizations has the same conven-
ient feature.

Influence of approximation properties
on the data representation

Allocating useful information from initial data is
one of the data processing problems. It is often required
that the extracted data adequately represent the initial
information [12 — 15]. Obviously, the efficiency of such
extraction algorithms depends on many factors, in par-
ticular, on the approximation properties of the applied
mathematical tools.

For example, algorithm JPEG is de-facto a stand-
ard for compression of digital images. In this algorithm,
compression is achieved due to the fact that most of the
quantized coefficients, which are obtained using dis-
crete cosine transform (DCT), are equal to zero. This
means that a few DCT-coefficients describe all infor-
mation. This important property is based on the well-
known approximation properties of trigonometric poly-
nomials {1,cos(nx),sin(nx)} .

It was proved in [1 — 3, 6, 8] that the best approx-
imation of wide classes of periodic differentiable func-

tions by spaces of linear combinations of atomic func-
tions up(x), ups(x) and generalized Fup-functions

i, m(X) almost coincides with the corresponding A.N.

Kolmogorov width (we note also that in some cases the
value of best approximation is equal to the width). This
means that in the terms of A.N. Kolmogorov width
these functions are just as effective as classic trigono-
metric polynomials. Hence, it is enough to operate with
an insignificant number of DAT or generalized DAT
coefficients in the process of data analysis. So, DAT-
coefficients and generalized DAT-coefficients are
convenient tools for processing of discrete data.

Dependence of data representation
on the order of smoothness

The wide use of classic trigonometric polynomials
is due to many factors. The following one is the most
important: there are many physical processes and phe-
nomena, which are well described using trigonometric
functions.

But in some cases application of cos(x) and

sin(x) leads to undesirable effects. These functions are

analytic. For this reason processing of data with smooth
changes using trigonometric functions is so useful. For
example, application of discrete cosine transform in
JPEG algorithm allows achieving a high compression
ratio. At the same time, it can be easily checked that if
we recompress JPEG-image using JPEG algorithm, we
get degradation in quality or increase the file size. What
is the reason for this effect? The answer is quantization
of DCT-coefficients. Indeed, this procedure is used to
obtain integer numbers instead of real-valued DCT-
coefficients. But in the process of decompression we get
data with less smooth changes. So, the decompressed
image is less analytical than the original one. This yields
that JPEG recompression becomes less effective.
Atomic functions up(x) and upg(x) are not ana-

Iytic. Moreover, these functions are non-quasianalytic
(for more details see, for example, [2]). By construction,
order of smoothness of the generalized Fup-function
depends on the properties of the mother function. For
example, if the mother function f(x) is non-

quasianalytic, then fy (X) is non-quasianalytic too.

Therefore, application of atomic functions and general-
ized Fup-functions to processing of data with low order
of smoothness is quite promising.

Besides, it was shown in [1, 6, 8] that there exists
almost trigonometric basis in the spaces of atomic func-
tions and generalized Fup-functions. This means that
these spaces are just as good approximation tools as
trigonometric polynomials. Combining this with the



previous conclusion, we see that application of DAT-
procedure and generalized DAT-procedure is much
more effective than discrete cosine transform.

Application perspectives

In this section we consider some actual problems
that can be solved or partially solved using DAT and
generalized DAT.

As it was shown above, DAT and generalized
DAT procedures can be effectively used instead of
DCT. Hence, it is quite natural to use them, for exam-
ple, in lossy data compression (notice that a detailed
discussion of application of atomic functions upg(x) to

lossy image compression is presented in [16]). For this
purpose the following scheme can be used:

1) preliminary data processing (for example, RGB-
to-YCrCb transformation, block splitting procedure
etc.);

2) discrete atomic transform (or generalized dis-
crete atomic transform);

3) quantization of DAT-coefficients (or general-
ized DAT-coefficients);

4) lossless compression of quantized coefficients.

Another application is an analysis of time series.
For this purpose generalized atomic wavelet expansion,
which was introduced in [4], can be used.

This is a partial list of practical applications. It is
clear that investigation of all possible applications of
discrete atomic transform and generalized discrete
atomic transform is a topic for a special research.

Conclusions

In this paper we have introduced discrete atomic
transform and generalized discrete atomic transform that
can be used in discrete data processing. It have been
shown that

1) DAT-procedure and generalized DAT-
procedure have linear complexity in the size of initial
data;

2) DAT-coefficients and generalized DAT-
coefficients are convenient for discrete data processing
and analysis;

3) procedures, which are inverse to DAT and gen-
eralized DAT, have linear complexity;

4) application of DAT-procedure and generalized
DAT-procedures is much more promising than DCT-
procedure.

We also have presented some possible applications
of DAT-procedure and generalized DAT-procedures.

In general, the main result of the current paper is a
fundamental justification of application of atomic func-
tions up(x), ups(x) and generalized Fup-functions

fnm(X) to the processing of discrete data and lossy

data compression.

Acknowledgement. The authors are grateful to
professor V. A. Rvachev for his attention to their re-
search.

References (GOST 7.1:2006)

1. Psaués, B. JI. Hexnaccuueckue memoowl meo-
puu  npubnudxicenuti 6 kpaesvix 3saoavax [Texcm] |/
B. JI. Psaués, B. A. Psaués. — K. : Haykosa oOymka,
1979. — 196 c.

2. Rvachev, V. A. Compactly supported solutions
of functional-differential equations and their applica-
tions [Text] / V. A. Rvachev // Russian Math. Surveys.
—1990. — Vol. 45, No. 1. — P. 87 — 120.

3. Rvachev, V. A. On approximation by means of
the function up(x) [Text] / V. A. Rvachev // Sov. Math.
Dokl. —1977.—Vol. 233, No. 2. — P. 295-296.

4. Brysina, |. V. Generalized atomic wavelets
[Text] / 1. V. Brysina, V. O. Makarichev // Radioelec-
tronic and Computer Systems. — 2018. — Vol. 85, No. 1.
—P. 23-31.

5. Teopus R-gpynxyuii u axmyanshvie npobiemol
npuxnaonoi mamemamuxu [Texem] | FO.I. Cmosmn,
B. C. Ilpoyenxo, I'.Il. Manvko, H.B. [onuapiok,
JI. B. Kypna, B. A. Psaues, H. C. Cunexon, U.b. Cu-
poooica, A. H. lUleguenxo, T. U. [leiixo. — K. : Hayxosa
Ooymka, 1986. — 264.

6. Makarichev, V. A. Approximation of periodic
functions by mups(x) [Text] / V. A. Makarichev // Math.
Notes. — 2013. — Vol. 93, No. 6. — P. 858-880.

7. Brysina, 1. V. On the asymptotics of the general-
ized Fup-functions [Text] / I. V. Brysina, V. A. Ma-
karichev // Adv. Pure Appl. Math. — 2014. — Vol. 5,
No. 3 - P. 131-138.

8. Brysina, I. V. Approximation properties of gen-
eralized Fup-functions [Text] / I. V. Brysina, V. A. Ma-
karichev // Visnyk of V. N. Karazin Kharkiv National
University, Ser. “Mathematics, Applied Mathematics
and Mechanics”. —2016. — Vol. 84. — P. 61-92.

9. Maxapuues, B. A. Ob6 oonou necmayuonapHoi
cucmeme beckoneyno oughghepenyupyemvix 6eignemos ¢
xomnakmuwim Hocumenem [Text] | B. A. Maxapuues I/
Bichux XHY, Cep. «Mamemamuka, npuxiaona mame-

mamuka i mexauixay. — 2011. — Ne 967, ewin. 63.
- C. 63-80.
10. Brysina, 1. V. Atomic wavelets [Text] /

I. V. Brysina, V. A. Makarichev // Radioelectronic and
Computer Systems. — 2012. — Vol. 53, No. 1. — P. 37-45.

11. Makarichev, V. A. The function mups(x) and its
applications to the theory of generalized Taylor series,
approximation theory and wavelet theory [Text] /
V. A. Makarichev // Contemporary problems of mathe-
matics, mechanics and computing sciences: collection
of papers / V. A. Makarichev ; editors: N. N. Kizilova,
G. N. Zholtkevych. — Kharkiv : Apostrophe, 2011.
—P. 279-287.

12. Kuan-Ching Li (eds.). Big data management
and processing [Text] / Kuan-Ching Li, Hai Jiang,
A.Y. Zomaya (eds.). — Chapman and Hall / CRC, 2017.
— 487 p.

13. Gonzalez, R. C. Digital image processing
[Text] / R. C. Gonzalez, R. E. Woods. — Prentice Hall,
2008. — 977 p.



14. Salomon, D. Handbook of data compression
[Text] / D. Salomon, G. Motta, D. Bryant. — Springer,
2010. - 1370 p.

15. Tsay, R. S. Analysis of financial time series
[Text] / R. S. Tsay. — John Wiley and Sons, 2010.
— 714 p.

16. Makarichev, V. O. Application of atomic func-
tions to lossy image compression [Text] / V. O. Ma-
karichev // Theoretical and applied aspects of cybernet-
ics. Proceedings of the 5™ International scientific con-
ference of students and young scientists. — Kyiv :
Bukrek, 2015. — P. 166-175.

References (BSI)

1. Rvachev, V. L., Rvachev, V. A. Neklassicheskie
metody teorii priblizhenii v kraevykh zadachakh [Non-
classical methods of approximation theory in boundary
value problems]. Kyiv, “Naukova dumka” Publ., 1979.
196 p.

2. Rvachev, V. A. Compactly supported solutions
of functional-differential equations and their applica-
tions. Russian Math. Surveys, 1990, vol. 45, no. 1, pp.
87-120.

3. Rvachev, V. A. On approximation by means of
the function up(x). Sov. Math. Dokl. 1977, vol. 233, no.
2, pp. 295-296.

4. Brysina, I. V., Makarichev, V. A. Generalized
atomic wavelets. Radioelectronic and Computer Sys-
tems, 2018, vol. 85, no. 1, pp. 23-31.

5. Stoyan, Yu. G., Protsenko, V. S., Man’ko, G. P.,
Goncharyuk, 1. V., Kurpa, L. V., Rvachev, V. A,
Sinekop, N. S., Sirodzha, I. B., Shevchenko, A. N.,
Sheiko, T. I. Teorija R-funkcij i aktual’nye problemy
prikladnoj matematiki [Theory of R-functions and cur-
rent problems of applied mathematics]. Kyiv, “Naukova
dumka” Publ., 1986. 264 p.

6. Makarichev, V. A. Approximation of periodic
functions by mups(x). Math. Notes, 2013, vol. 93, no. 6,
pp. 858-880.

7. Brysina, I. V., Makarichev, V. A. On the asymp-
totics of the generalized Fup-functions. Adv. Pure Appl.
Math., 2014, vol. 5, no. 3, pp. 131-138.

8. Brysina, I. V., Makarichev, V. A. Approxima-
tion properties of generalized Fup-functions. Visnyk of
V. N. Karazin Kharkiv National University, Ser. “Math-
ematics, Applied Mathematics and Mechanics”, 2016,
vol. 84, pp. 61-92.

9. Makarichev, V. A. Ob odnoi nestatsionarnoi sis-
teme beskonechno differentsiruemykh veievletov s
kompaktnym nositelem [On the nonstationary system of
infinitely differentiable wavelets with a compact sup-
port]. Visnyk KiaNU, Ser. “Matematika, prikladna ma-
tematika and meckhanika”, 2011, no. 967, pp. 63-80.

10. Brysina, I. V., Makarichev, V. A. Atomic
wavelets. Radioelectronic and Computer Systems, 2012,
vol. 53, no. 1, pp. 37-45.

11. Makarichev, V. A. The function mups(x) and
its applications to the theory of generalized Taylor se-
ries, approximation theory and wavelet theory. Contem-
porary problems of mathematics, mechanics and com-
puting sciences, Kharkiv, “Apostrophe” Publ., 2011, pp.
279-287.

12. Kuan-Ching Li, Hai Jiang, Zomaya, A. Y.
(eds.). Big data management and processing, Chapman
and Hall / CRC, 2017. 487 p.

13. Gonzalez, R. C., Woods, R. E. Digital image
processing, Prentice Hall, 2008. 977 p.

14. Salomon, D., Motta, G., Bryant, D. Handbook
of data compression, Springer, 2010, 1370 p.

15. Tsay, R. S. Analysis of financial time series,
John Wiley and Sons, 2010, 714 p.

16. Makarichev, V. O. Application of atomic func-
tions to lossy image compression.Theoretical and ap-
plied aspects of cybernetics.Proceedings of the 51 In-
ternational scientific conference of students and young
scientists, Kyiv, “Bukrek” Publ., 2015, pp. 166-175.

Hocmynuna 6 peoaxyuro 4.09.2018, paccmompena na peoxonnecuu 12.09.2018

ATOMAPHI ®YHKIIII TA iX Y3ATAJIBHEHHSA B ObPOBII TAHUX:
TEOPETUKO-®YHKIIOHAJBHUWH MIAXIA

I B. Bpucina, B. O. Maxapiuee

AtomapHa QYHKIIiS — IIe pO3B'I30K 3 KOMIIAKTHUM HOCIEM JIHIHHOTO (YHKIIOHATBHO-AH(EpeHIialbHOTO PiB-
HSIHHS 3 TIOCTIHHUMHU KoedillieHTaMH Ta JIIHIWHIUMH TIepEeTBOPEHHIMHU apryMeHTy. Teopis aromapHux (yHKLiil BH-
HUKIa y 70-X pokax 20-ro cTopiyds 4epe3 HeOOXiTHICTh PO3B'SI3yBaTH PI3HOMAHITHI MPUKIAIHI TPOOIEMH, 30KpeMa
KpaiioBi 3aja4i. OfHI€I0 3 NPUYMH BUHUKHEHHS aToMapHUX (QyHKIiH Ta 6arathoX IHIIMX KJIaciB (GYHKIIHA € HEMOXK-
JUBICTh BUKOPUCTAHHS TaKWX KIACHYHUX 3ac00iB HAONIKEHHA, SIK anreOpaidHi Ta TPUTOHOMETPHUYHI MOJIHOMH.
OpHiero 3 HAROLIBII BiTOMMX aToMapHHUX (YHKIIH € Up-pyskuis B. O. PBauoBa. 3 po3BUTKOM TEXHIYHUX 3ac00iB
3MIHIOBIHCS ICHYIOYi MPOOIeMH Ta BUHUKAIU MPUHITUIOBO HOBi. Tak, 3apa3 oAHI€I0 3 HaWOUTBIIT BaKIMBUX IPO-
Omem € 00poOka Bemmkux 00'eMiB maHuX. Ilpy oMy €(pEeKTUBHICT ANTOPUTMIB 37COUTHIIOTO 3aJIC)KHUTH Bill BIIac-
TUBOCTEH MaTEeMaTHYHOTO anapary, 10 BUKOPHCTOBYEThCs. LI cTarTs mpucBsiueHa 0a30BUM MPUHIMIIAM 3aCTOCY-
BaHHS JCSKHX aTOMAapHHUX (QYHKIIiH Ta iX y3araapHEHb B 00poOIli TaHUX Ta CTUCHEHHI iH(OopMaIlii 3 BTpaTaMH SIKOC-
Ti. Y po6OoTi MU PO3IIITHEMO OCHOBHI T€OPETUKO—(YHKIIIOHAIBHI BIACTUBOCTI IMX (YHKLINH Ta HagaMo iX iHTepI-
peTarriro cTocoBHO 00poOku iHpopMarltii. OCHOBHUMH TiepeBaraMu aToMapHUX (QYHKIIIH € TIaakicTh, KOMITAKTHICTh
HOCISI Ta TapHi anpokcUManiiiHi BractuBocTi. OKpiM TOTO, MTPOCTOPH aTOMapHUX (DYHKIIIH Ta y3arambHeHHX Fup-
GYHKIIHN, SKi € UIKOM MPUPOAHUM y3araibHeHHsIM Fup-dynkuiit B. O. PBayoBa, aCHMITOTHYHO €KCTpEMabHI IS



HaOnKeHHs nepioanuHux audepenniioBanux ¢yHkuin. Y tepminax nomnepeunuka 3a A. H. Konmoroposum e
03Havae, mo i QyHKIii Tak camo eheKTHBHI, sIK 1 Kiacu4Hi TpuronoMeTpuuni nominomu {1, cos(nx), sin(nx)}. To-
My 3aMiHa JAWUCKPETHHX IIEPETBOPEHB, IO 0a3yIOTHCS HAa TPUTOHOMETPUYHMX (YHKIIAX, HA BIOMOBIIHI HEpeTBO-
peHHS, AKi OyIyIOTHCS 3a JOMMOMOTOI0 aTOMapHUX (YHKIINA Ta y3arambHeHHX FUup-¢yHKOiH, € mepcreKTuBHOO. 3
LI€I0 METOI0 MU BBOAMMO y PO3IJISL IMCKPETHE aTOMapHe TIEPETBOPECHHS Ta y3arajlbHEHE JUCKPETHE aTOMapHe Ie-
PETBOPEHHS. MU TaKoXX PO3TIITHEMO 3aJICKHICTh PE3yNIbTaTiB 0OpPOOKH JaHHWX Bifl TIOPSIKY TIAAKOCTI Ta PO3MIpy
Hocist. OCHOBHHM Pe3yJibTaToM poOOTH € TeOpeTH4HEe OOTPYHTYBaHHS €()eKTHMBHOCTI aToMapHUX (YHKIIIH Ta y3ara-
npHeHNX FUp-dyHKuiit B 00poO1i JaHuX Ta CTUCHEHHI iH(opMartii.

Kuarouosi cioBa: 006poOka maHNX; CTHCHEHHS iH(popMaIlii; aromapHi QyHkil; up-pyrkmis; Fup-¢yHkmis; y3a-
rajgbHeHa FUp-dyHKIisS; IUCKpeTHE aToMapHe IIepeTBOPEHHS; y3arajibHeHe AUCKPETHE aTOMapHe MepeTBOPEHHS.

ATOMAPHBIE ®YHKIIUU U UX OBOBIIEHUSI B ObPABOTKE JTAHHBIX:
TEOPETHUKO-®YHKIIMOHAJIBHBIN ITOAXOJ

HU. B. bpvicuna, B. A. Makapuueg

ATomapHO#l (QYHKUMEH Ha3bIBaeTCsl pEIICHHE C KOMIIAKTHBIM HOCHTENEM JIMHEHHOro (yHKIMOHAIBHO-
I pepeHINATHHOTO YpaBHEHS C TOCTOSTHHBIMA K03 (DUITMEeHTaMU 1 TMHEHHBIMH IIPE0Opa30BaHUSIMH apryMEHTa.
Teopust aromapHbIX QyHKIMHA Bo3HUKIA B 70-X rogax 20-ro cTOJETHS B CBSI3U C HEOOXOMMOCTBIO PEIllaTh Pa3iny-
HBIE TIPUKJIAIHBIC 331a49H, B YACTHOCTH, KpaeBble 3agaui. OQHOHM M3 MPUYMH BOSHUKHOBEHUS aTOMAapHBIX (QYHKINH
W MHOTHX JIPYIHX KJI1acCOB (DYHKIMH SIBJISICTCS HEBO3MOXXHOCTh NMPUMEHEHUS! TaKUX KJIACCHYECKHX CPEACTB MpPH-
OMmKeHus1, Kak aareOpandecKkue U TPUTOHOMETpUIECKHe MOTUHOMBL. OMHOW M3 HanboJiee M3BECTHBIX aTOMAapHBIX
¢bynkumit sBisiercst Up-pynkuus B. A. PaueBa. C pa3BuTHEM TEXHHYECKHX CPEACTB MEHSIOTCS CYIECTBYIOLIHE
po0JIeMBbl U TIOSIBIISIIOTCS MPUHIMIHAIBHO HOBBIE. Tak, B HacTosiIiee BpeMsi OHON U3 HanboJiee BaXKHBIX POOIeM
siBIsIeTCst 00paboTka OGoNbmuX MaHHEIX. [Ipu 3ToM () (EeKTHBHOCTH aNTOPUTMOB CYIIECTBEHHBEIM 00pa3oM 3aBUCHT
OT NPUMEHSIEMOT0 MaTeMaTHUYecKoro ammapara. J[aHHas cTaThs MOCBsIIEHa 0a30BBIM INPHHIMIIAM MPHUMEHEHUS
aTOMapHBIX (GYHKIWH U MX 0000mmIeHni B 00paboTKe u cxxatun nHPopMaun. B paboTe MBI paccMOTPHM OCHOBHBIE
TEOPETUKO-(YHKIMOHAIBHBIE CBOMCTBA 3THX (YHKIMH U NPUBEAEM UX MHTEPIIPETALHUIO C TIO3UIUN 00pabOTKK HH-
¢dopmarn. OCHOBHBIMH TIPEUMYIIECTBAMH aTOMAapPHBIX (DYHKIUIA SIBISIFOTCS TJIA/IKOCTh, KOMITAKTHOCTh HOCHTEIS U
XOpOIINE aNIpOKCHMAIMOHHBIE CBOWCTBa. Kpome TOro, mpocTrpaHcTBa aTOMapHbIX (YHKIMH W 000OIMIEHHBIX
Fup-dbyHKIMi, KOTOPBIC SBISIOTCSA SCTECTBCHHBIM 0000mIcHHeM Fup-¢yHkiui B. A. PBadeBa, acCHMITOTHYECKH
AKCTPEMAaINbHBI [UTS MPHONMKCHUS Iepruoandeckux anddepeHnupyeMbix GyHKIni. B TepMuHax momnepeyHnka mo
A. H. KosmoropoBy 3T0 3HauuT, 4TO Takue (QYHKIHMH SBISIOTCS TAaKUMH K€ d(PPEKTUBHBIMU, KaK M KJIaCCHYECKUE
TpuroHomerpudeckue nonmuHomsl {1, cos(nx), sin(nx)}. ITosroMy 3aMeHa ITUCKPETHBIX IPEOOpa3OBaHUi, KOTOPHIE
0a3upyroTcsi Ha TPUTOHOMETPUYECKUX (YHKIMSIX, HA COOTBETCTBYIOLIME NMpPEoOpa3oBaHMs, KOTOPHIE CTPOSITCS C
MOMOIIBbIO aTOMapHBIX QYHKIMHA 1 0000mEHHBIX FUP-GyHKIWMA, sBiseTcs nepcnekTuBHOM. C 3TOW 1eNbio MBI BBO-
JIMM JTUCKPETHOE aTOMapHOE IpeoOpazoBaHue M 0000IIEHHOE AMCKPETHOE aToMapHoe peobpazoBanue. Takxke Mbl
paccMOTPUM 3aBUCHMOCTB PE3YJIbTATOB 0OPaOOTKH AHHBIX OT IMOPsJIKA TIAJKOCTH U pa3Mepa Hocutens. OCHOB-
HBIM Pe3yNbTaTOM PalOTHI SABIACTCSA TeopeTHdeckoe 00ocHOBaHME YPPEKTUBHOCTH aTOMAapHBIX (PYHKIA 1 00600-
méHHBIX FUP-GyHKIMI B 00paboTKe JaHHBIX U CKATUU MH(POPMALHH.

KiaioueBble cjoBa: 00paboTka MaHHBIX; C)KaThe HWHQOPMAIUW; aToOMapHble QYHKOHUH; UP-QYHKIHS,
Fup-dbyakums; o6o6ménnas FUup-yHKIMs; AUCKpPETHOE aToMapHOE MpeoOpa3oBaHue; 000OMIEHHOE AHUCKPETHOE
aToMapHOe MpeoOpa3oBaHue.
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