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ATOMIC FUNCTIONS AND THEIR GENERALIZATIONS IN DATA PROCESSING:

FUNCTION THEORY APPROACH

The atomic function is solutions with a compact support of the linear functional differential equations with con-
stant coefficients and linear transforms of the argument. The atomic function theory was created in the 70's of
the 20th century due to the necessity to solve different applied problems, in particular, boundary value problems.
One of the reasons for the appearance of atomic functions and some other classes of functions was the inability
to apply such classic approximation tools as algebraic and trigonometric polynomials. V.A. Rvachev up-function
is the most famous and widely applies atomic function. The development of technologies changes the existing
problems and fundamentally new problems appear. Nowadays big data processing is one of the most important
problems. It should be mentioned that suitable mathematical tools must be applied to obtain the desired result.
This paper is devoted to the fundamentals of applications of some atomic functions and their generalizations in
data processing and data reduction. In this paper, we consider the main properties of these functions from the
function theory point of view and give their interpretation with respect to information processing. Smoothness,
compact support, and good approximation properties are the main advantages of atomic functions. Moreover,
the spaces of atomic functions and the spaces of generalized Fup-functions, which are the natural generalization
of V.A. Rvachev Fup-functions, are asymptotically extremal for the approximation of periodic differentiable
functions. This means that in the terms of A.N. Kolmogorov width these functions are just as effective as classic
trigonometric polynomials {1, cos(nx), sin(nx)}. Hence, the replacement of discrete transforms based on trigo-
nometric functions on similar transforms based on atomic functions and generalized Fup-functions is quite prom-
ising. For this purpose, we introduce discrete atomic transform and generalized discrete atomic transform. We
also discuss the dependence of data processing results on order of smoothness and size of support of the applied
functions. The theoretical justification of the application of some atomic functions and generalized Fup-functions
to data processing and, in particular, data reduction is the main result of this paper.

Keywords: data processing; data compression; atomic functions; up-function; Fup-function; generalized Fup-
function; discrete atomic transform; generalized discrete atomic transform.

It is well-known that complexity and efficiency of
algorithms of big data sets processing depend on proper-

Introduction

Theory of atomic functions appeared in the 70’s of
the 20" century because of necessity to solve different
applied problems, especially boundary value prob-
lems [1]. The first atomic function is V. A. Rvachev up-
function

1 % o sin(t~2‘k)
up(x):E_joo e ETdt

This function is the most famous and widely used atomic
function. Later many other different atomic functions
were constructed and investigated. One of the reasons for
the appearance and further development of atomic func-
tions and some other classes of new functions was the
inability to use in numerical methods such classic con-
structive tools as trigonometric and algebraic polynomi-
als [1].

Now fundamentally new technical capabilities have
been created and science community has a significant
number of totally new problems. Processing of big data
is one of them.

ties of used mathematical tools. Atomic functions com-
bine a huge number of convenient properties. For this
reason they have many different applications (note that a
list of current application is presented in [4]; also com-
prehensive survey, which was actual at the time of writ-
ing, can be found in [5]). It should be mentioned that at
the current time atomic functions are mostly used as a
tool for analysis of functions of real or complex variables.
But now data is often discrete (for example, digital image
is a matrix). Therefore, it is the development of algo-
rithms for discrete data processing that is one of the most
important problems. Hence, the following question is
quite natural: is it rational to use atomic functions in
processing of discrete data? In this paper we get an an-
swer on this question. For this purpose the following ap-
proach is used: we consider the main properties of some
atomic functions and their generalizations from the func-
tion theory point of view and obtain the interpretation
with respect to information processing.
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Fig. 1. The graph of up-function and its derivative

Formulation of the problem

Consider the space of up-function shifts

UP, :{(p(x): @(X):chup[x—zinj}, n=012,....
k

Approximation properties of these spaces were investi-
gated in [1 - 3]. It was also shown that in the space UP,

there exists a basis that consists of translates of the func-
tion

: —n-1\\"
17 itx sm(t2 ) t
Fupn(x)z—je — | F| — [dt,
21 ' t2—n—1 2n
where F(t) is the Fourier transform of up(x) with a lo-

cal support.
These results were generalized in [12] for the case
of spaces

k
UP,,, =10 o(X)= ) CrlUpsp| X— ,
| {‘P PR ( (2s)“J}

where s=2,3,4,..., n=0,12,... and
sin® (S’[(ZS)_k)

PRUREY

dt.
T k=l % (25)"‘ sin (t(ZS)’k )

t

In particular, it was proved that shifts of the function
sin

_1 T x| 2

Fups , (x) = P I € t

n
F{ : n}n,
—00 2(25)n (28)

where F(t) is the Fourier transform of upg(x), consti-

tute a basis of the space UF; ;.
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Fig. 2. The graph of up,(x) and its derivative

Consider the function

1 7 e (sin(t/ N
fam ) =— [ ™[R Ee Nt
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where F(t) is the Fourier transform of the positive even
function f(x)eLo,(U) with a support

supp f(x) =[-1,1], jjof(x)dx -1, N#0 and mell .
The function fy ,(x) is called generalized Fup-function

and f(x) is its mother function [6, 7].

Generalized Fup-function is a natural generalization
of V. A. Rvachev Fup-functions and Fup , (X).

It follows from [1 — 3, 6 — 8] that UP,, UP;, and

the spaces of generalized Fup-functions shifts combine
the following advantages:

1) these spaces are asymptotically extremal for ap-
proximation of periodic differentiable functions;

2) the spaces UP,, are extremal for approximation

of periodic differentiable functions;
3) these spaces have a locally supported bases;



4) elements of these spaces have high order of
smoothness.
This implies that atomic functions up(x), ups(x)

and generalized Fup-functions are convenient for appli-
cations, in particular, for construction of different numer-
ical methods. In other words, from function theory point
of view these functions are excellent mathematical tools.

The aim of this paper is to prove the efficiency of
up(x), ups(x) and generalized Fup-functions in dis-

crete data processing.

Discrete data transform

The spaces of atomic functions and generalized
Fup-functions can be easily used for representation of
real or complex variable functions. Let us introduce the
following scheme of discrete data representation.

We consider the case of one-dimensional of real-
valued data.

Let D={dg,dy,...,
d; can be the result of measuring a certain indicator. For

dy | be some data. The value of

example, d; is the temperature or the exchange rate at the
i-th moment in time.

Let us construct the function d(x) such that the data
D is a set of values of this function. For this purpose it
is sufficient to construct the scale of the independent var-
iable x.

By [a,b] denote some segment. Let x; =a+i-h,
where h=(b-a)/M and i=0,1,...,M.

Further, denote by L the space of atomic functions
UP, or UF; .

Finally, let the system of functions {(pj (x)} be a ba-

sis of the space L.
Using classic decomposition procedure, we can find
the function

d(x) = D oy (X) (1)
k

such that
d(x;)=d; (2
forany i=0,1,...,M.
Note that the set of atomic coefficients Q = {wy}

uniquely identifies the data set D = {dj} .

In this way we construct the procedure for the trans-
formation of some discrete data D into atomic coeffi-
cients Q. We call this procedure the discrete atomic
transform (DAT) and the set of coefficients the DAT-
coefficients. If L is a space of generalized Fup-func-
tions, we call this procedure the generalized discrete
atomic transform.

It is obvious that the basis {(pj(X)} of the linear

space L can be chosen in different ways. The simplest
approach is to choose atomic wavelets or generalized
atomic wavelets, which were constructed in [4, 9 — 11],
as a basis. In this case we get wavelet expansion of the
discrete data D .

In the same way we can construct DAT-procedure
and generalized DAT-procedure for representation of
complex-valued and multi-dimensional discrete data D .

Dependence of data processing complexity
on the support of the basic functions

In the previous section we introduced the special
numerical scheme that can be used for discrete data pro-
cessing. It is evident that the following questions are of
particular interest:

1) what is the complexity of DAT and generalized
DAT procedures?

2) what is the complexity of algorithm for obtaining
initial data?

It is obvious that complexity of these algorithms
principally depends on the properties of the basis

{0500}
Existence of the locally supported basis in the

spaces of atomic functions and generalized Fup-functions
is a convenient feature of these spaces. For instance,

n+2 n+2}

supp Fupp, (x) = [_F’F (3)

and the system of functions

{Fupn [x— 2k+1n j} @
2n+ K

is a basis of the space UP, [1, 3];

n+2n’ n+2n} 5)
2(2s)" 2(2s)

{FupSn (x— 2k+nj} (6)
’ 2(29)" )},

constitutes a basis in the space UF; , [12];

supp Fups o (x) = {—

and the system

finally,

SUPP fyy () = [— mi2 M 2} ™

and spaces of these generalized Fup-functions have a ba-

SIS
2k+m
{fN,m(X_ N J}k 8)

(actually, the spaces of generalized Fup-functions are
constructed as a linear span of the system (8) [8]).




To obtain DAT-coefficient Q we put x=x; for
i=0,1,...,N inexpansion (1). Using (2), we get the sys-
tem of linear algebraic equations. If (4), (6) or (8) is a
basis of the space L, then it follows from (3), (5) and (7)
that matrix of this system is band. Hence, complexity of
solution is O(M) . In other words, the algorithm of trans-

form of D into the coefficients Q has linear complexity
in the size of initial data. This means that DAT and gen-
eralized DAT procedures have linear complexity in
the size of data. By the same argument, complexity of
the inverse procedure is also linear. Indeed, to obtain
the value d; we should put x =x; in (1). From (3), (5)

and (7) it follows that the most part of the terms on the
right side of equality (1) is equal to zero. So, we need to
calculate the sum of several terms.

If we choose atomic wavelets or generalized atomic
wavelets as a basis of the linear space L, we obtain just
the same situation. It was shown in [4, 9 - 11] that these
wavelets are locally supported functions. Therefore dis-
crete atomic transform and generalized atomic transform
of the data D into the coefficients Q have linear com-
plexity. Also, the inverse procedures are the algorithms
with a linear complexity.

Processing of multi-dimensional data using atomic
functions and their generalizations has the same conven-
ient feature.

Influence of approximation properties
on the data representation

Allocating useful information from initial data is
one of the data processing problems. It is often required
that the extracted data adequately represent the initial in-
formation [12 — 15]. Obviously, the efficiency of such
extraction algorithms depends on many factors, in partic-
ular, on the approximation properties of the applied
mathematical tools.

For example, algorithm JPEG is de-facto a standard
for compression of digital images. In this algorithm, com-
pression is achieved due to the fact that most of the quan-
tized coefficients, which are obtained using discrete co-
sine transform (DCT), are equal to zero. This means that
a few DCT-coefficients describe all information. This
important property is based on the well-known approxi-
mation properties of trigonometric polynomials
{1,cos(nx),sin(nx)} .

It was proved in [1 — 3, 6, 8] that the best approxi-
mation of wide classes of periodic differentiable func-
tions by spaces of linear combinations of atomic func-
tions up(x), upg(x) and generalized Fup-functions

fnm(X) almost coincides with the corresponding A.N.
Kolmogorov width (we note also that in some cases the

value of best approximation is equal to the width). This
means that in the terms of A.N. Kolmogorov width these
functions are just as effective as classic trigonometric
polynomials. Hence, it is enough to operate with an in-
significant number of DAT or generalized DAT coeffi-
cients in the process of data analysis. So, DAT-coeffi-
cients and generalized DAT-coefficients are conven-
ient tools for processing of discrete data.

Dependence of data representation
on the order of smoothness

The wide use of classic trigonometric polynomials
is due to many factors. The following one is the most im-
portant: there are many physical processes and phenom-
ena, which are well described using trigonometric func-
tions.

But in some cases application of cos(x) and sin(x)

leads to undesirable effects. These functions are analytic.
For this reason processing of data with smooth changes
using trigonometric functions is so useful. For example,
application of discrete cosine transform in JPEG algo-
rithm allows achieving a high compression ratio. At the
same time, it can be easily checked that if we recompress
JPEG-image using JPEG algorithm, we get degradation
in quality or increase the file size. What is the reason for
this effect? The answer is quantization of DCT-coeffi-
cients. Indeed, this procedure is used to obtain integer
numbers instead of real-valued DCT-coefficients. But in
the process of decompression we get data with less
smooth changes. So, the decompressed image is less an-
alytical than the original one. This yields that JPEG
recompression becomes less effective.

Atomic functions up(x) and upg(x) are not ana-

Iytic. Moreover, these functions are non-quasianalytic
(for more details see, for example, [2]). By construction,
order of smoothness of the generalized Fup-function de-
pends on the properties of the mother function. For ex-
ample, if the mother function f(x) is non-quasianalytic,

then fy 1 (X) is non-quasianalytic too. Therefore, appli-

cation of atomic functions and generalized Fup-functions
to processing of data with low order of smoothness is
quite promising.

Besides, it was shown in [1, 6, 8] that there exists
almost trigonometric basis in the spaces of atomic func-
tions and generalized Fup-functions. This means that
these spaces are just as good approximation tools as trig-
onometric polynomials. Combining this with the previ-
ous conclusion, we see that application of DAT-proce-
dure and generalized DAT-procedure is much more
effective than discrete cosine transform.

Application perspectives



In this section we consider some actual problems
that can be solved or partially solved using DAT and gen-
eralized DAT.

As it was shown above, DAT and generalized DAT
procedures can be effectively used instead of DCT.
Hence, it is quite natural to use them, for example, in
lossy data compression (notice that a detailed discussion
of application of atomic functions upg(x) to lossy image

compression is presented in [16]). For this purpose the
following scheme can be used:

1) preliminary data processing (for example, RGB-
to-YCrCb transformation, block splitting procedure etc.);

2) discrete atomic transform (or generalized dis-
crete atomic transform);

3) quantization of DAT-coefficients (or generalized
DAT-coefficients);

4) lossless compression of quantized coefficients.

Another application is an analysis of time series.
For this purpose generalized atomic wavelet expansion,
which was introduced in [4], can be used.

This is a partial list of practical applications. It is
clear that investigation of all possible applications of dis-
crete atomic transform and generalized discrete atomic
transform is a topic for a special research.

Conclusions

In this paper we have introduced discrete atomic
transform and generalized discrete atomic transform that
can be used in discrete data processing. It have been
shown that

1) DAT-procedure and generalized DAT-procedure
have linear complexity in the size of initial data;

2) DAT-coefficients and generalized DAT-coeffi-
cients are convenient for discrete data processing and
analysis;

3) procedures, which are inverse to DAT and gen-
eralized DAT, have linear complexity;

4) application of DAT-procedure and generalized
DAT-procedures is much more promising than DCT-pro-
cedure.

We also have presented some possible applications
of DAT-procedure and generalized DAT-procedures.

In general, the main result of the current paper is a
fundamental justification of application of atomic func-
tions up(x), ups(x) and generalized Fup-functions

fnm (X) to the processing of discrete data and lossy data

compression.
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ATOMAPHI ®YHKIIII TA iX Y3ATAJIbHEHHS B OBPOBIII TAHUX:
TEOPETHUKO-®YHKIIIOHAJBLHUAM ITIIXI]

I B. Bpucina, B. O. Maxapiuee

AToMapHa (pyHKIIISI — 11e pO3B'SI30K 3 KOMIIAKTHIM HOCIEM JIHIHHOTO (DYHKIIOHANEHO-AU(EpeHIiaTbHOTO PiB-
HSTHHS 3 IOCTIHHUMU KoedillieHTaMu Ta JIHIHHUMU epeTBOPEHHSIMH apryMeHTy. Teopis atoMapHUX QyHKIiH BUHH-
kna y 70-x pokax 20-ro cTopiuusi uepe3 HeoOXiMHICTh PO3B'I3yBaTH PI3HOMAHITHI MPHUKIATHI POOIEMH, 30KpemMa
KpaiioBi 3aa4i. OfHI€I0 3 NPUYMH BUHUKHEHHS aTOMapHUX QYHKIIN Ta 6ararboX iHIIKMX KiaciB QyHKIIH € HEeMOX-
JIMBICTh BUKOPHCTAHHS TAaKUX KJIACHYHUX 3ac001B HAOIMKEHHS, SIK ajreOpaiuHi Ta TpUroHoMeTpuyHi nojinomu. On-
HI€I0 3 HAHOUTBII BiTOMUX aToMapHUX (YHKIIN € Up-yrkuis B. O. PBauoBa. 3 po3BUTKOM TEXHIYHUX 3aC00iB 3Mi-
HIOBJIMCS ICHYIOY1 TPOOIEMH Ta BUHUKAIN IPHHIMIIOBO HOBI. Tak, 3apa3 o/iHI€I0 3 HAHOUTBII BOXKIMBUX MPOOIIEM €
00po0Oka Benmukux 00'eMiB mauux. [Ipu mboMy e(EKTHBHICTH alTOPUTMIB 3A4EOUTBIIIOTO 3aJICKUTh BiJl BIIACTHBOCTEH
MaTeMaTU4HOTO anapary, I0 BUKOPUCTOBYEThCSL. L5 cTarTs mpucesiueHa 0a30BUM IMPHHIMIIAM 3aCTOCYBAHHS JEIKUX
aToMapHUX (PyHKIIN Ta IX y3araJpHeHb B 0OpOOIli TaHUX Ta CTUCHEHHI iH(opMaIlii 3 BTpaTaMu SKOCTi. Y poOOTi MH
PO3IIITHEMO OCHOBHI TEOPETHKO—()YHKI[IOHAJIbHI BIACTHBOCTI X (YHKIIIH Ta HaAaMo X IHTepIpeTarito CTOCOBHO
00po0Oku iHpopMarii. OCHOBHUMH IepeBaraMu aTOMapHUX (PYHKI(IHA € TIaaKiCTh, KOMIIAKTHICTh HOCISL Ta rapHi af-
pOKCHMAIIiiHi BMacTUBOCTI. OKpiM TOTO, IPOCTOPH aTOMapHUX (GYHKIIN Ta y3aralbHeHUX FUP-(QYHKIIIN, SKi € IUTKOM
MIPUPOJIHUM y3araibHeHHsIM FUp-dynkiiii B. O. PBauoBa, aCHMITOTHYHO €KCTPEMaIIbHI IS HAOIVKEHHS TIepio Iiy-
HUX TudepeHniioBaHnx GyHKIINA. Y Tepminax monepednnka 3a A. H. Konmoroposum e o3Havae, mo 1 pyHKIii Tak
caMo e(eKTHBHI, K i Kiacu4Hi TpuroHomeTpuyHi noninomu {1, cos(nx), sin(nx)}. Tomy 3amiHa AUCKPETHUX TEepe-
TBOPEHB, 0 0a3yIOTHCS HAa TPUTOHOMETPUIHHUX (DYHKITISX, HA BIAIOBIIHI IIEPETBOPEHHS, K1 OYAYIOThCS 32 JOMTOMO-
TOI0 aTOMapHUX (YHKILIH Ta y3aranbHeHHX FUP-QyHKILIH, € IepcrieKTHBHO0. 3 IIi€l0 METOI0 MU BBOJIMMO Y PO3TJIS]
JIICKpPETHE aToMapHe MEePeTBOPEHHS Ta y3arajibHeHEe JUCKPETHE aTOMapHe MepeTBOPeHHs. MU Takoxk pO3ristHEMO



3aJICKHICTh PE3YNIbTATIB 00POOKH JaHMX BiJ MOPSAAKY TIAIKOCTI Ta po3Mipy HOCist. OCHOBHUM PE3yJIbTaTOM poOoTH
€ TeOpeTUYHE OOTPYHTYBaHHS ¢(PEKTUBHOCTI aTOMAapHUX (QYHKIIIH Ta y3arampHeHHX FUP-QyHKIH B 00pobmi qannx
Ta CTUCHEHHI IH(popManil.

KurouoBi cioBa: 06poOka maHNX; CTHCHEHHS iH(pOpMaIlii; aromapHi pyHkmil; up-yaxkmis; Fup-¢yskmis; y3a-
rajgbHeHa FUP-yHKIsS; IMCKpeTHE aToMapHe IIepeTBOPEHHS; y3arajbHeHe AUCKPETHE aTOMapHe NePeTBOPEHHSI.
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